Algorithms for simulating quantum mechanics

Bryan Clark CSE Seminar

Why care about algorithms for quantum mechanics?

Accurate and efficient quantum mechanical simulations would have revolutionary changes to industrial applications, what we know about our universe and the way physics is done.

We know the rules.
Just need to figure out how to solve them.

From a talk by S. Aaronson from a talk by A. Aspuru-Guzik.

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. - Paul Dirac (1929)

It's lucky for us that they solved this problem a long time ago...

Equation of State Calculations by Fast Computing Machines

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules. Classical statistics is assumed,

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
and
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois

Unfortunately almost everything is a fermion.

Markov Chain Monte Carlo techniques still amongst the best and most used techniques.

Even water is hard...

Since that time, we've seen that there appears to be an exponential wall to simulating quantum systems

Why should that be?
2^{n} possible electron configurations
Quantum mechanics tells us we are simultaneously in a superposition of electronic configurations.

$$
\frac{1}{\sqrt{2}} y^{4}+\frac{1}{\sqrt{2}}
$$

Superconductor: electrons like to be on top of each other .
Our goal: Find out where the electrons want to be.

Minimal eigenstate of $H=-t \sum_{i j} c_{i}^{\dagger} c_{j}+U \sum_{i} c_{i \uparrow}^{\dagger} c_{i \uparrow} c_{i \downarrow}^{\dagger} c_{i \downarrow}$

$-t$

Linear Algebra

Spin liquid?

$H \Psi=E \Psi$ via Lanczos

$2^{n} \times 2^{n}$ matrix
$\mathrm{LiZn}_{2} \mathrm{Mo}_{3} \mathrm{O}_{8}$
State of the art: 48 spins
24 electrons

Each step is exponential

Aside: What's a Spin Liquid

Insulator

Topological: degeneracy that depends on manifold
Anyonic Excitations

Guess a Wave-function

The true Ψ has the property that $E=\Psi^{T} H \Psi$ is minimal over all Ψ. We need a compact representation of a 2^{n} state vector. (Important open question) In some cases, this needs to be an antisymmetric function on the electron positions

Venerable history: BCS Superconductivity Quantum Hall Effect

Model Wave-functions

People such as Bardeen and Laughlin guessed these wave-functions without a computer by sheer genius (and were rewarded nobel prizes for it). We want to replace nobel prize winner with computers

Protoypical Wave-functions:

$$
\Psi(\uparrow, \downarrow, \uparrow, \uparrow)=0.3 \quad V_{\uparrow, \downarrow, \uparrow, \uparrow} \quad 2^{n}
$$

Huse-Elser/CPS/EPS

$$
v_{12}^{a} v_{13}^{b} v_{23}^{c} v_{14}^{d} v_{24}^{e} \quad 4 n^{2}
$$

$$
\begin{array}{l|ll}
\mathrm{MPS} & M_{1}^{a} M_{2}^{b} M_{3}^{c} M_{4}^{d} & n D^{2} \\
M_{\uparrow}^{a} M_{\downarrow}^{b} M_{\uparrow}^{c} M_{\uparrow}^{d} &
\end{array}
$$

$v:$ scalar M : matrix

Unfortunately, these wave-functions are not compact enough. For the most interesting physical systems you need an exponential number of parameters (turn up the matrix size, the number of determinants, etc.) to ge converged energies.

Beyond compactness, even for a small number of parameters (1000) we have a hard optimization problem:

Given a parameterization for $\phi_{i}\left(r_{j}\right)$
or $v_{i j}^{A}$ how do you find (even local) minima.
You only have stochastic access to the energy
(Important open question) and each energy evaluation is slow!

Essentially an online learning problem.

Currently: Stochastic Gradient Descent $\vec{\alpha} \rightarrow \vec{\alpha}+\delta \nabla_{\vec{\alpha}} E$
Stochastic Reconfiguration $\quad \alpha_{i} \rightarrow \alpha_{i}+\delta \operatorname{sign}(\partial E / \partial \alpha)$
'Time Evolution'

$$
\Psi=P(1-\tau H) \Psi
$$

Striped Spin Liquid Crystal

 Topological + Nematic!

* Herbertsmithite
* Volborthite

* Zn -

Paratacamite

An aside on DMRG

The most important (physics) algorithms still running on one node.
Every other wavefunction gets optimized by stochastic variational means.

DMRG is optimized by alternating least squares.

Outer product

$10,000 \times 10,000$

Diagonalize

Diffusion Monte Carlo

(Stochastic Power Series)

$$
\begin{aligned}
& \lim _{M \rightarrow \infty}(1-\tau H)^{M} \Psi=\Psi_{0} \\
& \lim _{M \rightarrow \infty} G^{M} \Psi=\Psi_{0} \\
& \sum_{i j k l m n} G_{i j} G_{j k} G_{k l} \ldots G_{m n} \Psi_{n}=\left(\Psi_{0}\right)_{i} \\
& P(i \rightarrow j)=\frac{\left|G_{i j}\right|}{\sum_{j}\left|G_{i j}\right|} \quad w(i \rightarrow j)=\sum_{j}\left|G_{i j}\right| \operatorname{sign}\left(G_{i j}\right)
\end{aligned}
$$

Optimization: Walk w/ $(1-\tau H)$ on manifold of parameterized states.

$$
\text { DMC: Walk w/ }(1-\tau H)
$$

Quantum

The Exciton Bose Liquid

High Tc superconductors have a bad metal.
Can we find a bad metal in a simple Hamiltonian.

Signs of bad metal - X in the structure factor.

Parallelization

Unlike DMRG, diffusion Monte Carlo parallelizes extremely well.

A Sign Problem

The "only" problem in physics

Your errors on this are good

but your errors on this are horrible.

$\overbrace{\Delta}^{\Delta} \Delta$

Exponential Relative Variance

Annihilation

Without

With

- Annihilation helps because paths of different signs cancel.
- Annihilation fails because you can't keep enough walkers to get cancellation of all paths.

With but too few walkers

Variational Wave Function

Quantum Computing

Will quantum computers solve our problems?

Maybe...

Modified ChurchTuring Thesis

All computers (physical systems) are essentially equivalent to your laptop.

Quantum Mechanics broke this

Two (minor) problems:

- No quantum computers (16 qubits)
- 100 qubit simulation $->10^{16}$ gates

Quantum simulations are quantum computers kill application, not factoring!

Quantum computers can (probably) compute g.s. in poly-time.

"A method is more important than a

 discovery, since the right method will lead to new and even more important discoveries."-Lev Landau

Conclusions

- Quantum simulations are important:
- and you've seen some exciting physics we've already discovered
- There are many beautiful algorithms
- some of which we've developed.
- But we have a long way to go.
- Deep and interesting questions...
- algorithms: FOCS/STOCS/ICML style-questions
- More traditional CSE focus on parallelization
- (Also interested in quantum computing!)
- Interested in collaboration; come find me!
- Striped Spin Liquid

(Modified)

Quhurch-Turins Thesis

$$
\begin{aligned}
&|0\rangle+|1\rangle 0 \\
&|\Psi\rangle-e^{i H t}|0\rangle|\Psi\rangle+|1\rangle\left(e^{i E_{0} t}\left|\Psi_{0}\right\rangle+e^{i E_{1} t}\left|\Psi_{1}\right\rangle+e^{i E_{2} t}\left|\Psi_{2}\right\rangle\right) \\
& \hline
\end{aligned}
$$

- Minor Problems:

No quantum computers (16 qubits)
100 qubit simulation -> 1016 gates

Everything is quantum mechanics

'Condensed Matter Physics'
 'Chemistry'

'Materials'
'Nuclear Physics'
'Water'
'Biology'
We know the rules.
Just need to figure out how to solve them.

Variational Monte Carlo

Variational Principle: $E_{0}=\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle \leq\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle$

Highly nonlinear optimization with an objective function $\langle E[\Psi[\vec{\alpha}]]\rangle$ and derivatives $\partial\langle E\rangle / \partial \alpha_{i}$ which can only be evaluated noisily and slowly.

Guessing a WaveFunction
 - Striped Spin Liquid

$$
\begin{aligned}
& \Psi_{P B C S}=P \prod_{k}\left(u_{k}+v_{k} c_{k, \uparrow}^{\dagger} c_{-k, \downarrow}^{\dagger}\right)|0\rangle \\
& \left\langle R \mid \Psi_{P B C S}\right\rangle=\operatorname{det} M \\
& M_{i j}=\phi\left(\vec{r}_{\uparrow, i}-\vec{r}_{\downarrow, j}\right) \equiv \phi\left(\vec{r}_{i j}\right)
\end{aligned}
$$

Some wave-functions

$M\left(i_{1}, i_{2}, . ., i_{n}\right)$
$A\left(i_{1}, i_{2}, i_{3}, i_{4}\right) B\left(i_{3}, i_{4}, i_{5}, i_{6}\right) C\left(i_{5}, i_{6}, \ldots\right)$

$M\left(i_{1}\right) M\left(i_{2}\right) M\left(i_{3}\right) M\left(i_{4}\right)$

Optimization by alternating least squares
Very hard to parallelize.
Thinking about stochastic SVD

Our group works on simulating strongly correlated systems. We are currently attacking the Hubbard model as a stepping stone toward more sophisticated models.

There's an exponential wall to simulating quantum systems.

A (only slightly) biased view on the state of the art to attenuate it.

With a few new algorithms

- Partial Node FCIQMC
- Release FCIQMC
- Release + FN MPS
- Efficient Multi-MPS
- SEMPS

Approach I: Just write down the wave-function

Exponential number of terms

- Multislater -Jastrow++
$|\Psi\rangle=\exp [-J(R)] \sum_{k} \alpha_{k} \operatorname{det} M_{\uparrow, k} \operatorname{det} M_{\downarrow, k}$

No sign problem but "bond-dimension" problem.

- PEPS or Huse-Elser or MERA

- MPS

Optimize without quantum numbers and project afterwards gains non-trivial energy. On triangular lattice, $\sim 10 \%$

- Multi-MPS

$\alpha\left|\Psi_{M P S 1}\right\rangle+\beta\left|\Psi_{M P S 2}\right\rangle+\gamma\left|\Psi_{M P S 3}\right\rangle$

How do we choose the MPS

Optimize?

Faster approach to get reasonable states...
Exact: $\left\{\left|\Psi_{M P S}\right\rangle, H\left|\Psi_{M P S}\right\rangle, H^{2}\left|\Psi_{M P S}\right\rangle, \ldots\right\}$

Approx: $\left\{\left|\Psi_{M P S}\right\rangle, P H\left|\Psi_{M P S}\right\rangle, P H P H\left|\Psi_{M P S}\right\rangle, \ldots\right\}$
Better: Let $\mathrm{H}=\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{4}+\mathrm{h}_{5}$
$\left\{\left|\Psi_{M P S}\right\rangle, h_{i}\left|\Psi_{M P S}\right\rangle, h_{i} h_{j}\left|\Psi_{M P S}\right\rangle, \ldots\right\}$ 4x8 Hubbard Model:
$5 \mathrm{MPO}^{\prime}$ of size 6
1 MPO of size 18
For $\mathrm{n}=3$, factor of 2000 x faster!

- Fixed Node: A (stochastic) sample of the w.f.

Two recent 'improvements':
Fixed node for less-local Hamiltonians

Fixed node on tensor networks

- Constrained Path:

Shiwei: Determinants

Garnet: MPS

Approach II: Sample Sign Problem - Efficiency as exp $[-\beta \Delta E]$

- PQMC + Annihilation

Brings up Delta E
Kalos

+ initiator: Ali Alavi
- AFQMC Free projection

Approach II: Sample Sign Problem - Efficiency as $\exp [-\beta \Delta E]$

- PQMC + Annihilation

Brings up Delta E
Kalos

+ initiator: Ali Alavi
- Partial Node FCIQMC Importance Sample + Partial Fixed-Node + Annihilation
- AFQMC Free projection
- SEMPS

- AFQMC release

- Sample from Tensor Networks + Annihilation
- RFCIQMC

Approach II: Sample Sign Problem - Efficiency as $\exp [-\beta \Delta E]$

- Annihilation + QMC
- AFQMC Free projection

Brings up Delta E

- SEMPS

+ initiator: Ali Alavi

- AFQMC release

- Partial Node FCIQMC

Importance Sample +
Partial Fixed-Node +
Annihilation

- Sample from Tensor Networks + Annihilation
- RFCIQMC

QMC: A Sign Problem

DMRG: A bond dimension problem.

Our goal is to write down an algorithm that has both a sign problem and a bond dimension problem.

We'd really like perfect annihilation through all these paths.

We'd really like effectively higher bond dimension.

Venerable history: BCS Superconductivity
Quantum Hall Effect
Model Wave-functions
Particularly valuable if the wave-function is conceptually simple and connects to analytical theory

Replace nobel prize winner with computers

HILBERT SPACE IS A BIG PLACE
$|\Psi\rangle=\exp [-J(R)] \sum_{k} \alpha_{k} \operatorname{det} M_{\uparrow, k} \operatorname{det} M_{\downarrow, k}$

$$
\left.J(R)=\sum_{i j} j_{j} \hat{i}_{i}^{k}-r_{j}\right)
$$

$$
M_{i j}=\phi_{i}\left(r_{j}\right)
$$

3d function
$R \equiv\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$

Unfortunately, these wave-functions are not compact enough. For the most interesting physical systems you need an exponential number of parameters (turn up the matrix size, the number of determinants, etc.) to ge converged energies.

We'd really like perfect annihilation through all these paths.
 $\left|M P S_{1}\right\rangle \approx\left|D_{1}\right\rangle+\left|D_{3}\right\rangle+\left|D_{20}\right\rangle+\ldots\left|\left\langle M P S_{1} \mid C\right\rangle\right|^{2}$ $\exp [-\tau H]\left|D_{1}\right\rangle+\exp [-\tau H]\left|D_{3}\right\rangle+\exp [-\tau H]\left|D_{20}\right\rangle+\ldots$

Represented 'exactly' by MPS of small bond-dimension.

You run out of bond-dimension much slower.
You're already starting at the best MPS you can get for your bond dimension. You're guaranteed to be better.

Massively Parallel

You do have a bond-dimension problem.
If $\operatorname{Sign}\left(\left\langle M P S_{1} \mid C\right\rangle\right) \neq \operatorname{Sign}\left(\left\langle\Psi_{0} \mid C\right\rangle\right)$, you have a weak sign problem.

$$
\beta=0.08
$$

$\beta=4.0$

4×32 hubbard model

What to do when you run out of bond dimension?

Resample here
Cone annihilation
Exact annihilation

A much smaller sign problem.

The best (or worst) of both worlds: SEMPS

QMC to evaluate DMRG
SEMPS MC

DRMG+QMC gives us powerful new algorithms including
Multi-MPS
SEMPS
Fixed-Node w / MPS
Release w/ MPS

Pareto-Optimal:
Multi-MPS SEMPS
Partial Node FCIQMC on Multi-MPS or Multi-Slater Jastrow

Release of CP AFQMC + SEMPS

