
From variational ansatz to 'exact' results:  a numerical exploration of models 
of strongly correlated systems

SEMPS SIMPS

QMC + Tensor Networks

SIMPS (Shift and Invert MPS) allows the finding of eigenstates in the matrix-
product state formalism - works with (H-E)-1

This gives us a new way to target excited states at energy E.

Ring Exchange Hamiltonian

tjk model with t=J=0

sign-problem free

conserved quantum numbers
electrons per row

can access 2D system

Sz parity per sublattice
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phase separation:  ‘stripes’ 

charge density wave

Exciton Bose-liquid (EBL) in charge sector
Bose surface of gapless excitations
Smoking gun of EBL

technically difficult; dimer-like
use Diffusion Monte Carlo + forward walking

with Katie Hyatt and Matthew Fisher

Pseudogap?

Preliminary suggestion of 
pseudogap?
superconductivity?

dn(k)/dk
possibly metastable
filling ~ 0.84; 4x32; DMRG

VMC on Hubbard

Why VMC?

AFM + (better) backflow 
extrapolate to the right energy 
(on small systems)

Because VMC gives insight into the nature of your 
wave-function. 

Q:  Can simple variational wave-functions teach us something about the 
important physics.  

For concreteness, let’s consider small systems at U=4 and filling ~ 0.875.

Backflow:  

Allowing arbitrary breaking of 
symmetries helps.

Low bond-dimension PEPS 
helps a bit…

Det[�i(rj)]e
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AF Mean Field

Backflow level 1

Backflow level 2Exact

AF Mean Field

Noninteracting Mean Field

`Best’ Slater-Jastrow

Outline
Non-fermi liquid <—> Ground state for ring-exchange Hamiltonian
Suggestions of Pseudogap

AFM + Backflow
Breaking symmetry in Slater-Jastrow
Finite PEPS

VMC Wavefunctions

New Methods

Shift and Inverse MPS (SIMPS)   <—> Access to excited states
Stochastic Evolution MPS (SEMPS) 
Tensor Networks + QMC

(We also have an alternative approach to this which is a variant to DMRG  - 
ESDMRG)

with Xiongjie Yu

with Han-Yi and Xiongjie Yu

with Xiongjie Yu with Xiongjie Yu and David Pekker

with Hitesh Changlani
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Exact (Stochastic) Projection | 0i = exp[��H]| T i
 T

 0

• Sample R with probability

• Apply 

• Compute Observables

| T (R)|2

G(R ! R0) = (I � ⌧H(R,R0))
 (R0)

 (R)

Cost:                  per Monte Carlo stepO(D↵)

Lanczos++

Basis: {| i, H| i, H2| i, H3| i, H4| i, ...}
Solve:                                   in this basisH| i = ES| i
Ways to compute basis 

• MPS/MPO Formalism (exact)

• Quantum Monte Carlo (exact)

• Hybrid QMC/MPO (exact)  

• Apply              via MPO, truncate to b2 and 
iterate (approximate)  

H| i

Bryan Clark 
University of Illinois at Urbana Champaign

SEMPS (Stochastically evaluating matrix product states)

Quantum Monte Carlo:  Stochastic Imaginary Time Evolution [Sign Problem!]

Matrix Product States:  Deterministic Imaginary Time Evolution [Finite Bond Dim.]

Combination:  (1) Start with a good wave-function.
 (2) Sample configurations from it 
 (3) Imaginary time evolve MPS from these deterministically.

 (4) When you run out of bond-dimension, resample from these 
(this can be done exactly)
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Optimization via Monte Carlo:  
Imaginary time evolution
Stochastic Reconfiguration
Exact linear sweeping

3-band (and others) with VMC, 
SEMPS, PEPS, AFQMC, 
DMET … coming soon

PEPS-alone (D=2):  -10.6
PEPS-Slater-Jastrow (D=2):  -15.44


