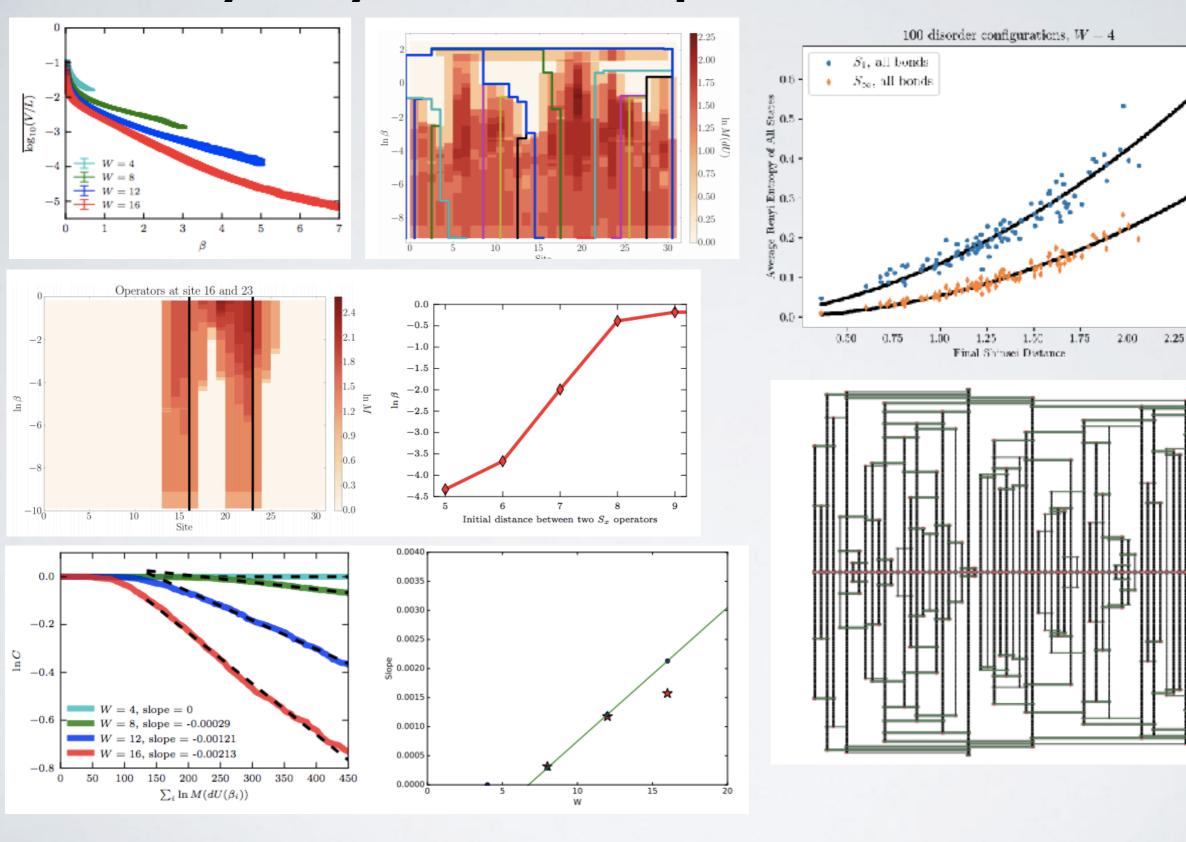
THE MOTHER OF ALL STATES ON THE KAGOME LATTICE

University of Illinois at Urbana Champaign with Hitesh Changlani, Dmitrii Kochkov, Krishna Kumar, Eduardo Fradkin

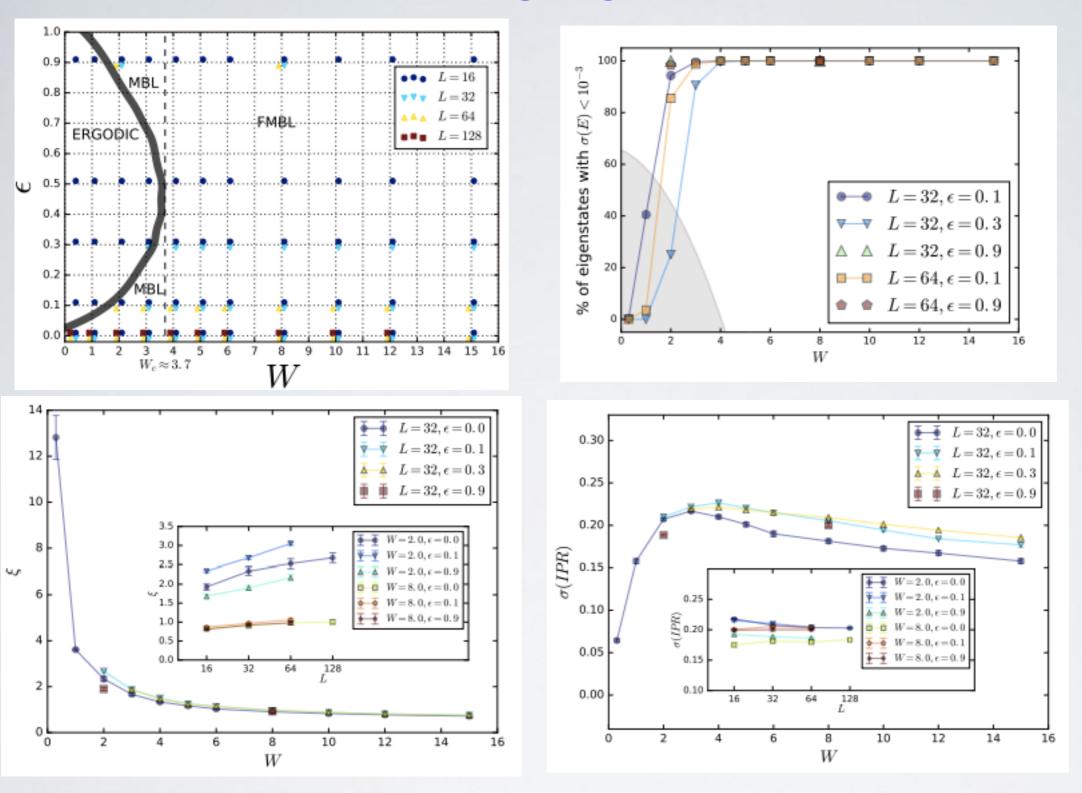
Microsoft Research - Station Q

The talk I'm not giving....

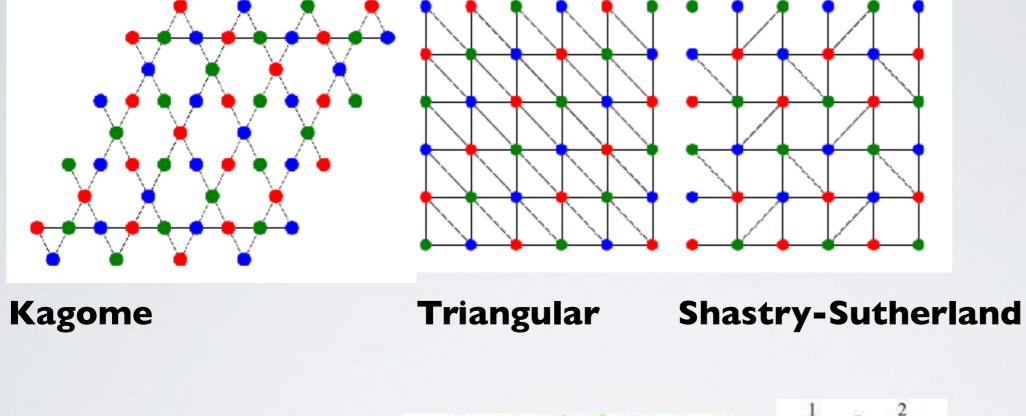
Many-body localization, quantum circuits, and holograph

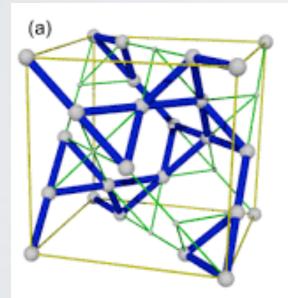


The other MBL talk I'm not giving....

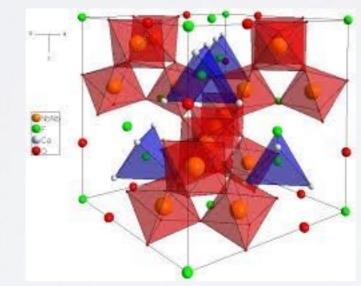


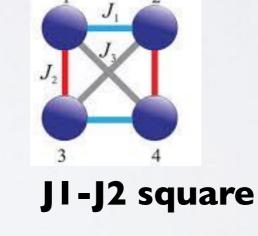
Many-body localization below the mobility edge and onebody density matrices The story of frustrated magnetism is really the story of insulating materials with spin degrees of freedom which live on a non-bipartite lattice.





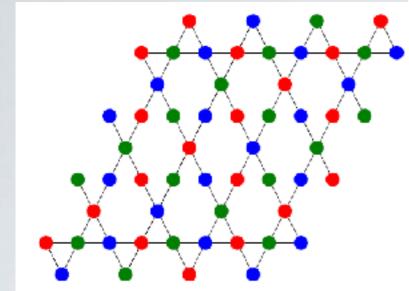
Hyperkagome

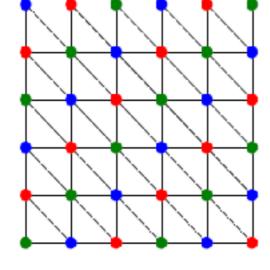


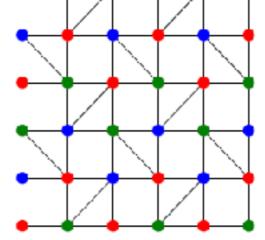


Pyrochlore

The story of frustrated magnetism is really the story of triangles.





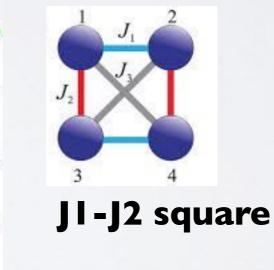


Kagome

Triangular

Shastry-Sutherland

Pyrochlore

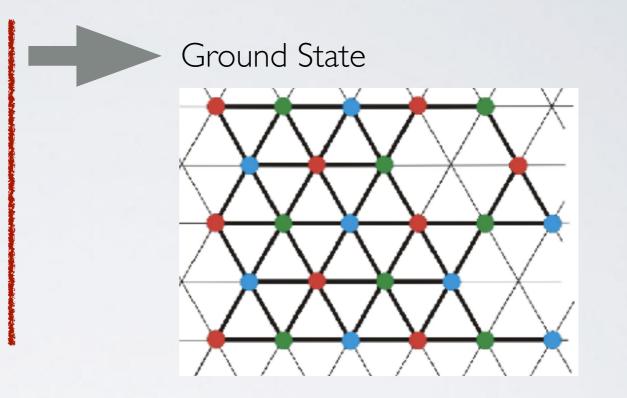


Hyperkagome

The history of frustrated magnetism started in 1973

when Phil Anderson suggested that the n.n. Heisenberg model on the triangular lattice wasn't a neel state (frustration!)

Spin I/2 quantum Hamiltonian's $H_{xy} = \sum_{\langle i,j \rangle} S_i^x S_j^x + S_i^y S_j^y$ $H_{xxz} = H_{xy} + J_z \sum_{ij} S_i^z S_j^z$ $J_z = 1$

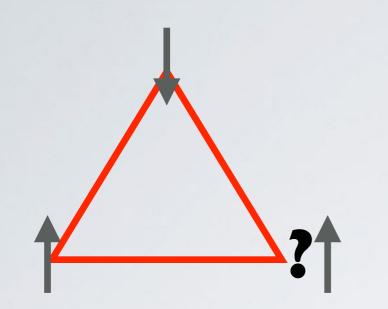


RESONATING VALENCE BONDS: A NEW KIND OF INSULATOR ?*

P. W. Anderson Bell Laboratories, Murray Hill, New Jersey 07974 and Cavendish Laboratory, Cambridge, England

(Received December 5, 1972; Invited**)

1973: Anderson predicts the Heisenberg model on the triangle lattice is a uniform RVB

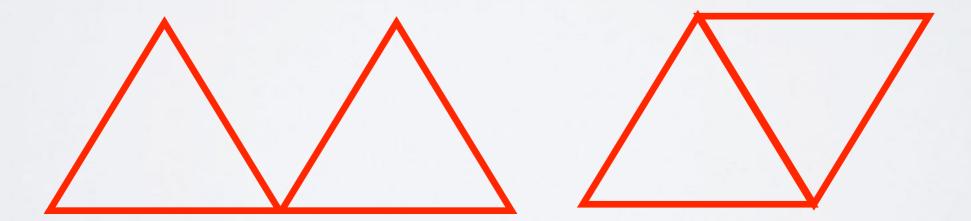


$$\begin{split} H_{xxz} &= H_{xy} + J_z \sum_{ij} S_i^z S_j^z \quad (\text{ising limit } J_z \to \infty) \\ H_{\text{ising}} &= \sum_{ij} S_i^z S_j^z \end{split}$$

 J_z

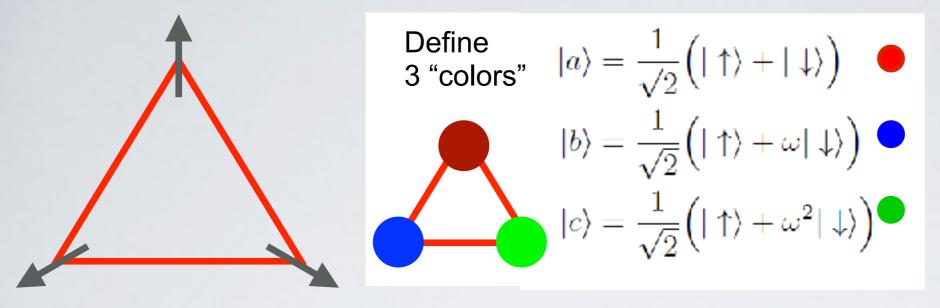
 ∞

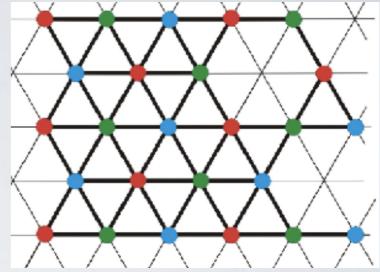
When you paste together many triangles, there are many degenerate states



0

But it wasn't....instead it was a 120 degree ordere

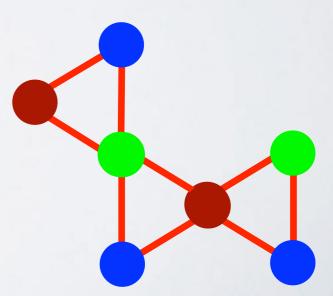




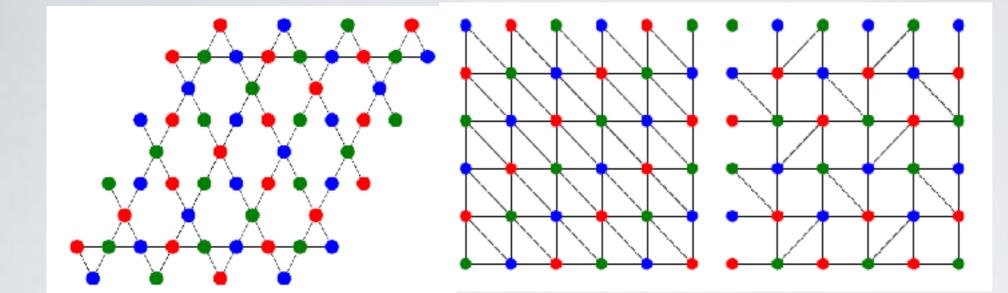
"Morally" this state but not exactly this state.

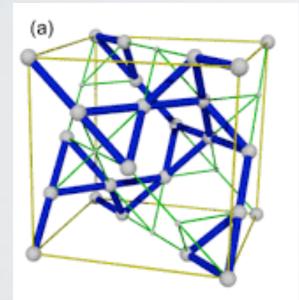
$$\begin{split} (|0\rangle + |1\rangle) \otimes (|0\rangle + \omega |1\rangle) \otimes (|0\rangle + \omega^2 |1\rangle) \\ \text{By projection} \quad \frac{|000\rangle + |111\rangle + |100\rangle + \omega |010\rangle + \omega^2 |001\rangle + \dots \end{split}$$

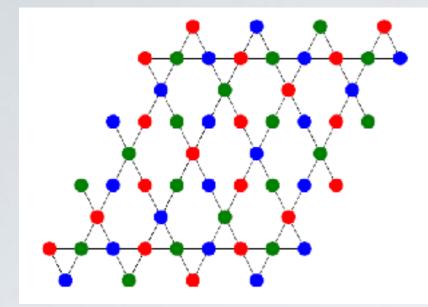
This is a high-energy eigenstate but projection removed it for us

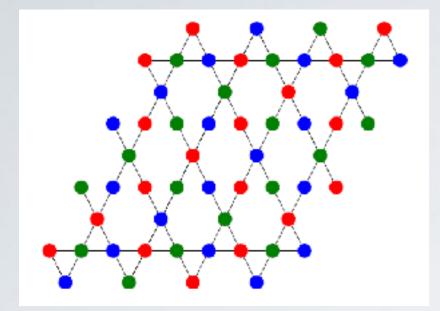


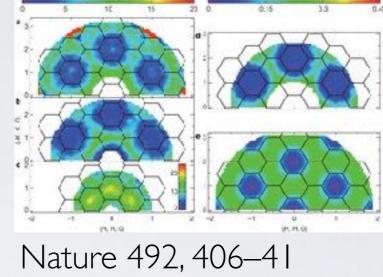
But there are other lattices of pasted-together triangles (shastrysutherland, kagome, hyperkagome) (also all frustrated!)



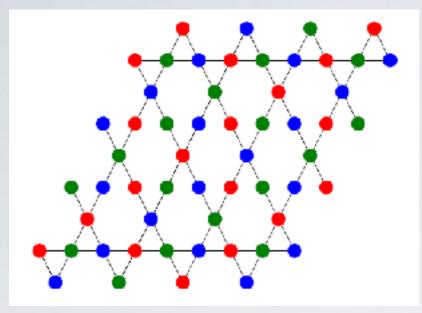


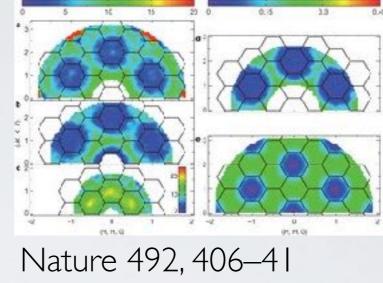






Herbertsmithite



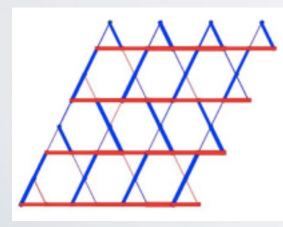


Herbertsmithite

Volborthite

Kapellasite

Vesigniette



Phys. Rev. Lett. 111, 187205

Z2 spin liquideisenberg (White/Huse) **Chiral spin liquid**:/3 plateau (this work)

I/3 plateau + J2-J3 (Donna Sheng)Sz=0 chiral (Bela Bauer, Andreas Ludwig)Sz=0 J1,J2,J3 (Donna Sheng)

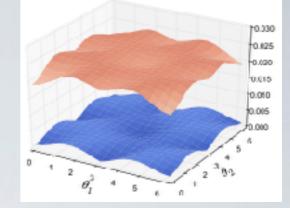
Kagame spin liquids everywhere....

Heisenberg $S_z = 0$ (KAHF) XY, $S_z = 2/3$ Uniform Chirality

Non-uniform Chirality

JI-J2-J3

[Gapped or gapless spin-liquid]
[Chiral Spin Liquid]
[Gapless Spin Liquid]
[Chiral Spin Liquid]



+ many kagome ordered states.

q=0 state

 $\sqrt{3} imes \sqrt{3}$ state

ferromagnetic state

The ising frustration doesn't seem to be a good explanation for the panalopy of spin-liquids.

(1) Why kagome and not triangular?

Both are equally frustrated in the ising limit.

(2) Ising seems to have little to do with competing phases around the spin liquid.

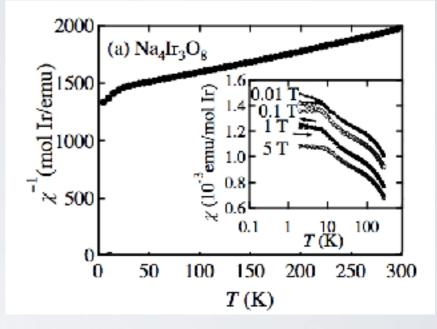
(3) Mainly classical degeneracy....maybe quantum fluctuations resolve into spin-liquid but why?

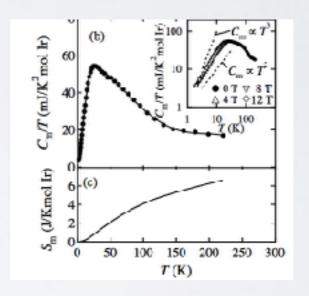
In addition there is some experimental evidence for hyperkagom $a_4 Ir_3 O_8$ (depleted pyrochlore)

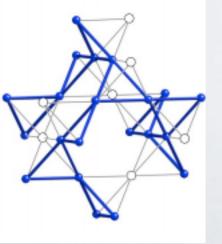
No sign of magnetic ordering down to a few Kelvin

Curie-Weiss temperature of 650K

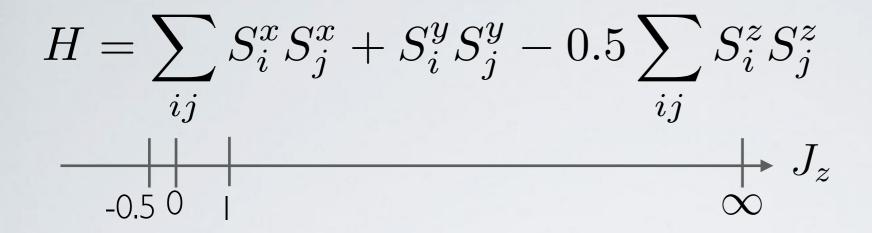
Gapless excitations



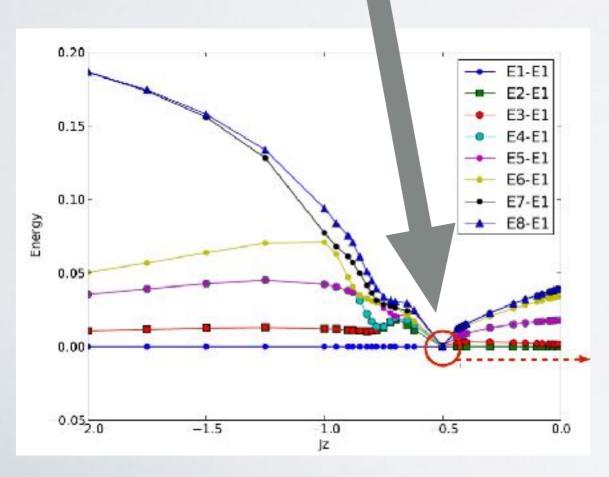


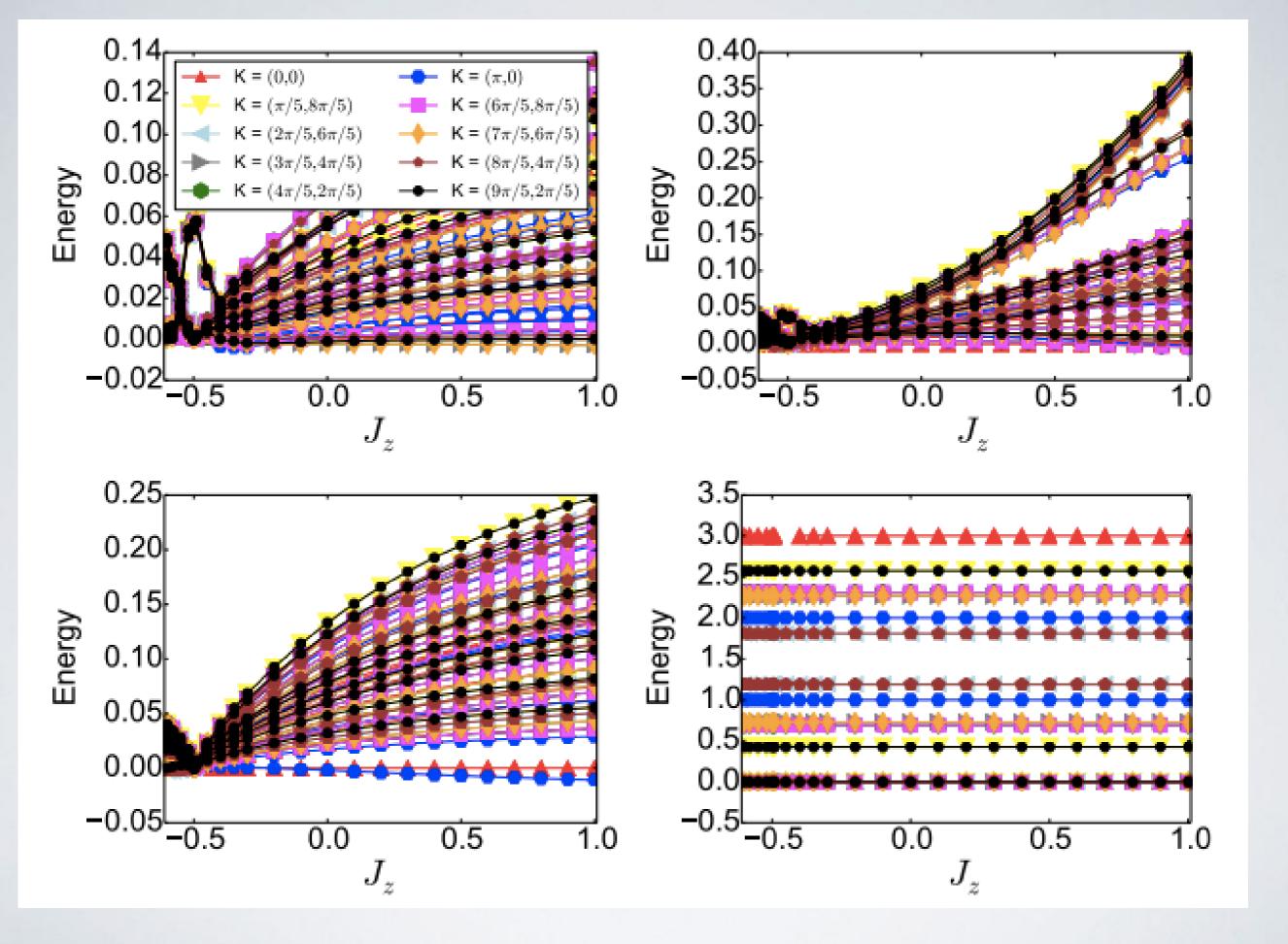


Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi (2006), arXiv:0705.2821 A new answer (amazing it hasn't been known for 30 years)

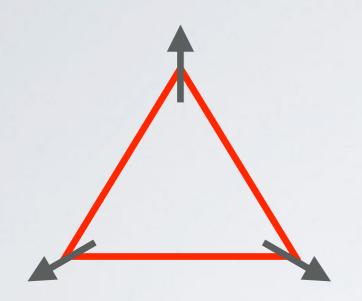


massive exact degeneracy in the XXZ model! exactly -J/4



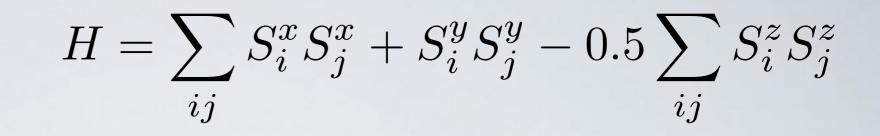


For a single triangle at the XY point, we can **relieve frustration**.



 $H = J_{xy} \sum_{ij} S_i^x S_j^x + S_i^y S_j^y$

This is the exact ground state for (Sz=1/2) and everyone is happy



$$H = \sum_{ij} S_i^x S_j^x + S_i^y S_j^y - 0.5 \sum_{ij} S_i^z S_j^z$$



$$|1\rangle \equiv |\uparrow\uparrow\uparrow\rangle$$

$$|2\rangle \equiv \frac{1}{\sqrt{3}} (|\uparrow\uparrow\downarrow\rangle + \omega|\uparrow\downarrow\uparrow\rangle + \omega^{2}|\downarrow\uparrow\uparrow\rangle)$$

$$|3\rangle \equiv \frac{1}{\sqrt{3}} (|\uparrow\uparrow\downarrow\rangle + \omega^{2}|\uparrow\downarrow\uparrow\rangle + \omega|\downarrow\uparrow\uparrow\rangle)$$

$$|4\rangle \equiv \frac{1}{\sqrt{3}} (|\downarrow\downarrow\uparrow\uparrow\rangle + \omega|\downarrow\uparrow\downarrow\rangle + \omega^{2}|\uparrow\downarrow\downarrow\rangle)$$

$$|5\rangle \equiv \frac{1}{\sqrt{3}} (|\downarrow\downarrow\uparrow\uparrow\rangle + \omega^{2}|\downarrow\uparrow\downarrow\rangle + \omega|\uparrow\downarrow\downarrow\rangle)$$

$$|6\rangle \equiv |\downarrow\downarrow\downarrow\downarrow\rangle$$

$$H = \sum_{ij} S_i^x S_j^x + S_i^y S_j^y - 0.5 \sum_{ij} S_i^z S_j^z$$

$$E = 9J/8$$

$$E = -3J/8$$

$$E = -3J/8$$

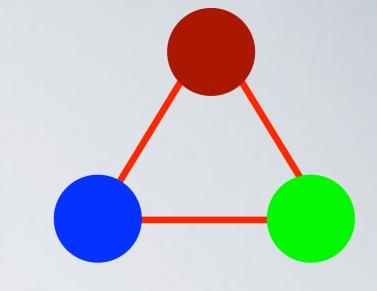
$$E = -3J/8$$

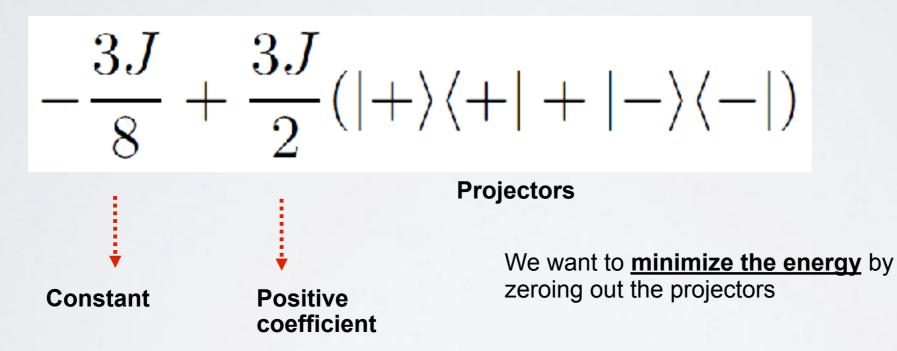
$$II_{tri} = -\frac{3J}{8} \sum_{i=1}^{6} |i\rangle\langle i| + \frac{9J}{8}(|+\rangle\langle +|+|-\rangle\langle -|)$$

$$II_{tri} = -\frac{3J}{8} \sum_{i=1}^{6} |i\rangle\langle i| + \frac{9J}{8}(|+\rangle\langle +|+|-\rangle\langle -|)$$

$$II_{tri} = -\frac{3J}{8} \sum_{i=1}^{6} |i\rangle\langle i| + \frac{9J}{8}(|+\rangle\langle +|+|-\rangle\langle -|)$$

$$\begin{split} |+\rangle &\equiv \frac{1}{\sqrt{3}} \Big(|\uparrow\uparrow\downarrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle \Big) \\ |-\rangle &\equiv \frac{1}{\sqrt{3}} \Big(|\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\uparrow\downarrow\downarrow\rangle \Big) \end{split}$$





Frustration Free!

Many Triangles

$$H = \sum_{\rm tri} H_{\rm tri} = \frac{3}{2} \sum_{\rm tri} P_{\rm tri} - \frac{3}{8} N_{\rm tri}$$

$$P_{\rm tri} \equiv |+\rangle \langle +|+|-\rangle \langle -|$$

NOTE: projectors on triangles **DO NOT** commute with each other!!!

So an arbitrary eigenstate on one triangle need not be COMPATIBLE with other triangles

$$H = \sum_{\text{tri}} H_{\text{tri}} = \frac{3}{2} \sum_{\text{tri}} P_{\text{tri}} - \frac{3}{8} N_{\text{tri}}$$
$$P_{\text{tri}} \equiv |+\rangle\langle+|+|-\rangle\langle-|$$

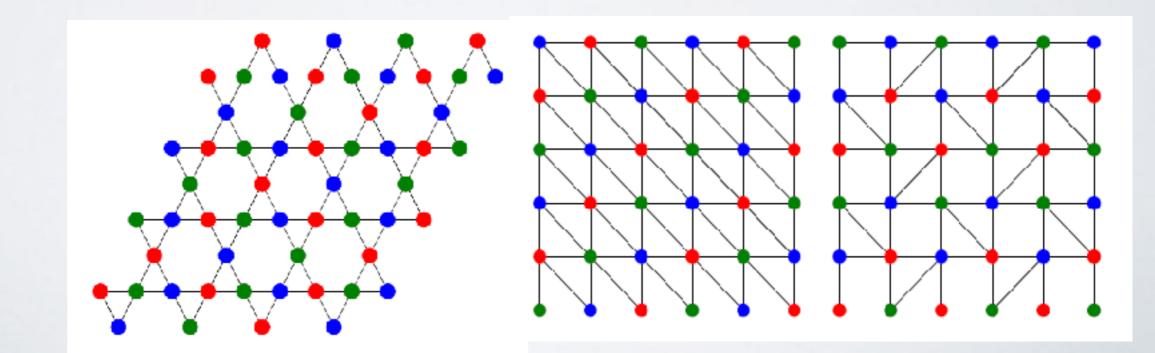
We want projector to annihilate our proposed solution

 $|\psi\rangle \equiv \prod \otimes |C_s\rangle_s$

s

$$|a\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + |\downarrow\rangle\right) \bullet$$
$$|b\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + \omega|\downarrow\rangle\right) \bullet$$
$$|c\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + \omega^{2}|\downarrow\rangle\right) \bullet$$

As long as we have ONLY one color per triangle the tensor product of all colors is an EXACT eigenstate



But there are more ground states....

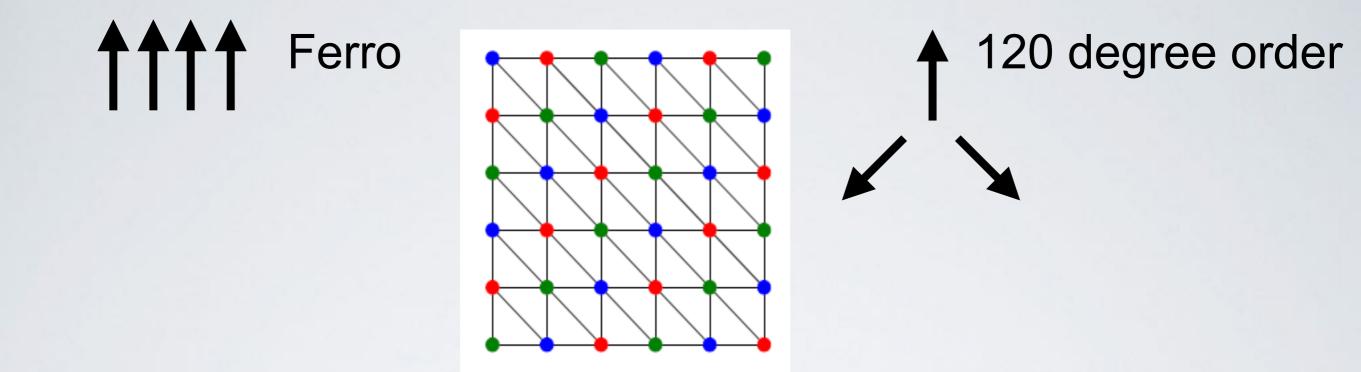
$$|\psi\rangle \equiv \prod_{s} \otimes |C_{s}\rangle_{s}$$
 This mixes Sz sectors
 \int_{V} But the Hamiltonian doesn't.

$$|\psi^{C}\rangle \equiv P_{S_{z}} \left(\prod_{\text{valid}} \otimes |C_{s}\rangle\right)$$

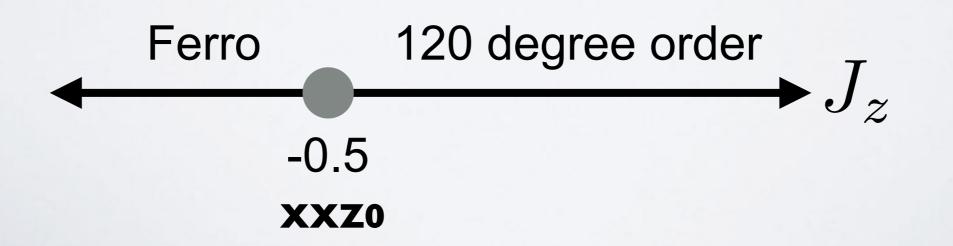
So projecting to Sz sectors are ground states.

Roughly, each color gives N ground states (one per Sz sector) (A bit of a lie because colors are non-orthogonal and may be more-so after projection)

An example: triangular lattice

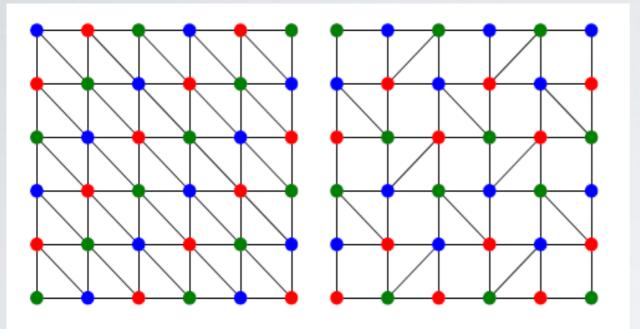


Linear Degeneracy

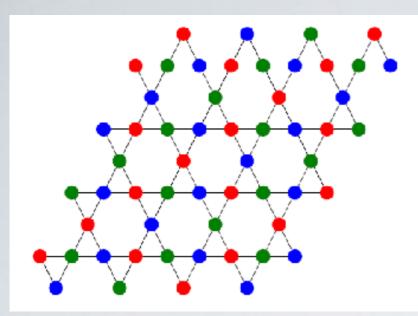


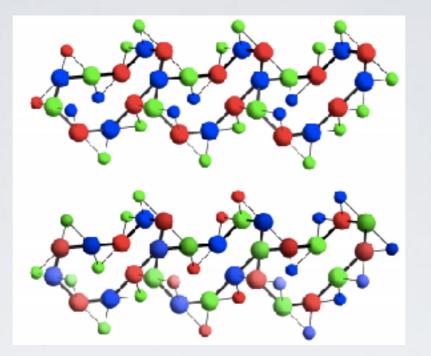
Question: How many colorings is this?

Only one (or two) colorings.

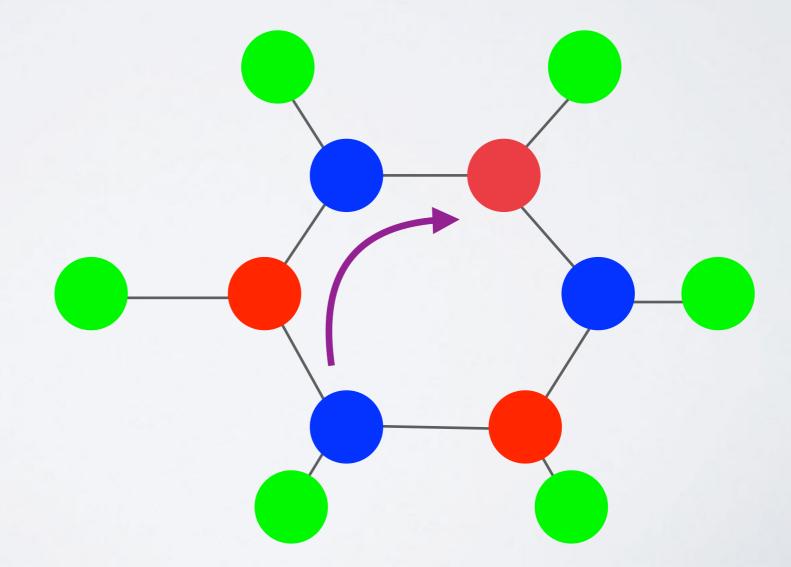


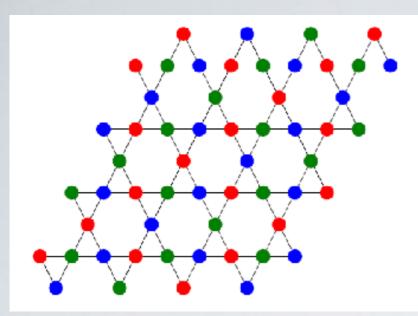
$$|a\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + |\downarrow\rangle\right) \bullet$$
$$|b\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + \omega|\downarrow\rangle\right) \bullet$$
$$|c\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle + \omega^{2}|\downarrow\rangle\right) \bullet$$

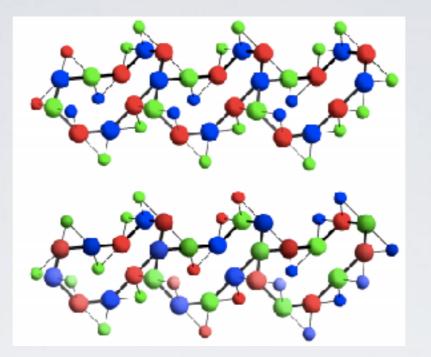




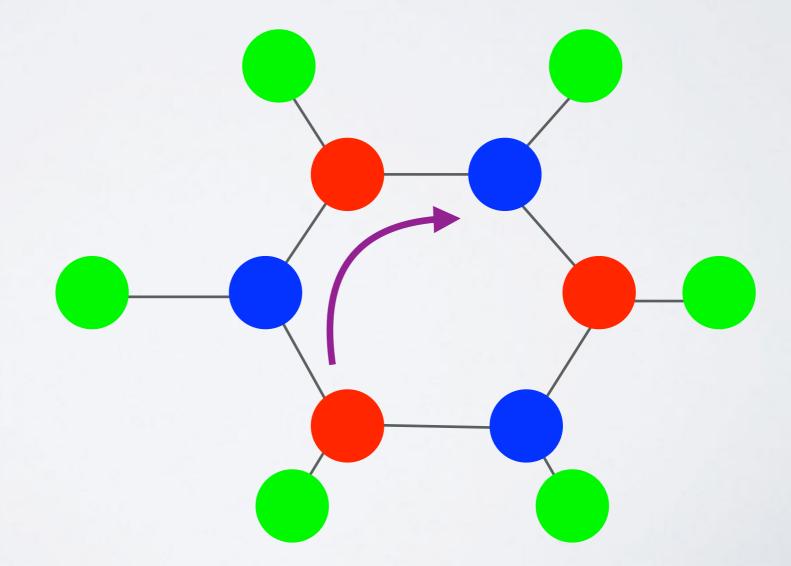
Consider kagome...

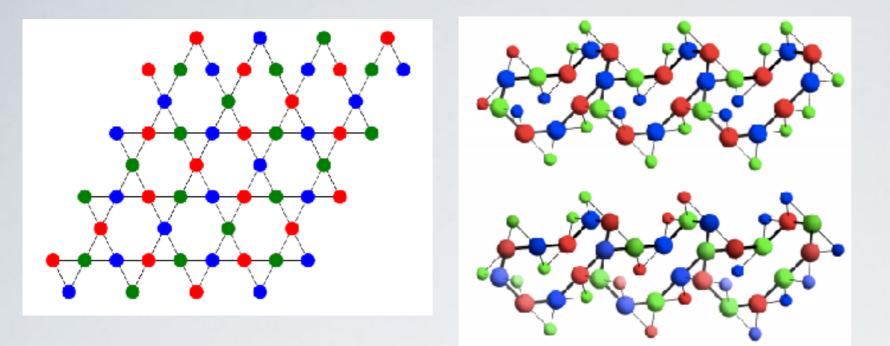






Consider kagome...





An exponential number of colorings!

 1.208^N (from Baxter)

But much fewer then Ising configurations....

Lattice	Ising configs	Colorings
2x2x3	924	8
3x2x3	48620	16
4x2x3	2.7 million	32

This looks like a many-body flat band...does it have anything to do with the known one-body flat band in kagome?

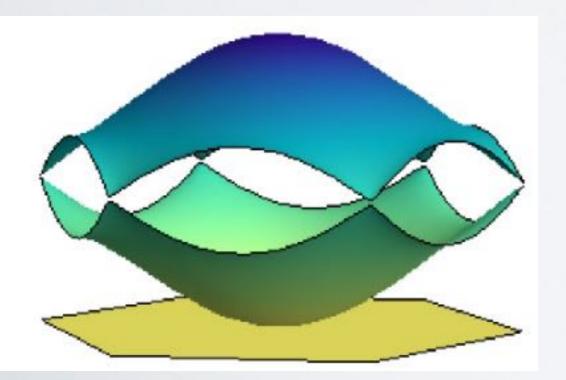
Yes...it's a superset of it. Take the product states and project to one spin-up.

PHYSICAL REVIEW B 78, 125104 (2008)

Band touching from real-space topology in frustrated hopping models

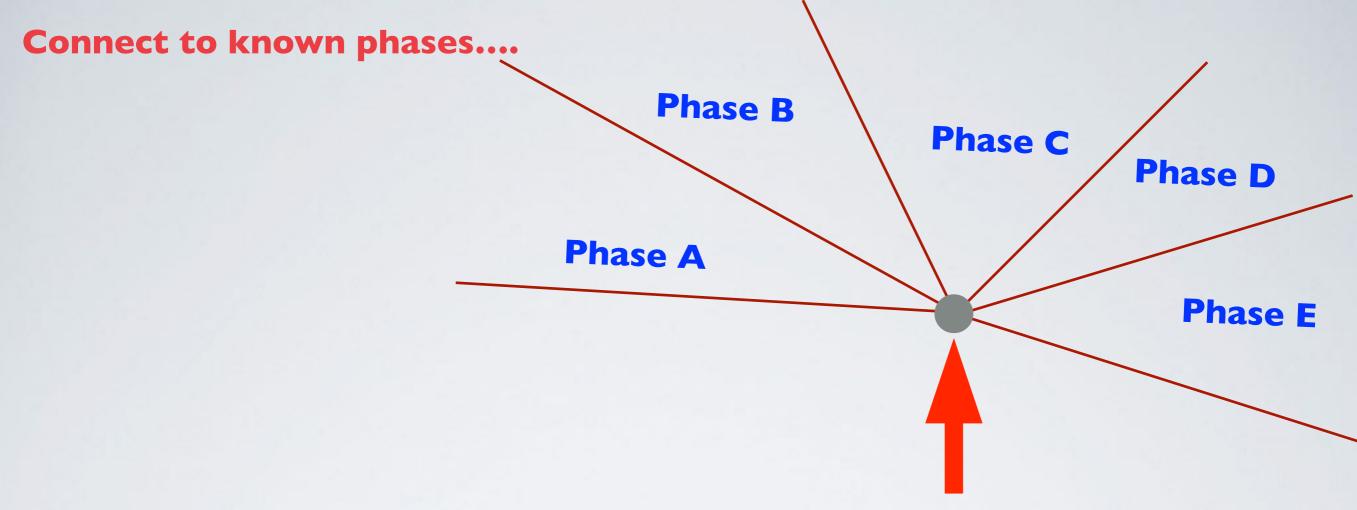
Doron L. Bergman,¹ Congjun Wu,² and Leon Balents³

$$\mathcal{H}_t = -t \sum_{\langle ij \rangle} \left(c_i^{\dagger} c_j + \text{H.c.} \right),$$

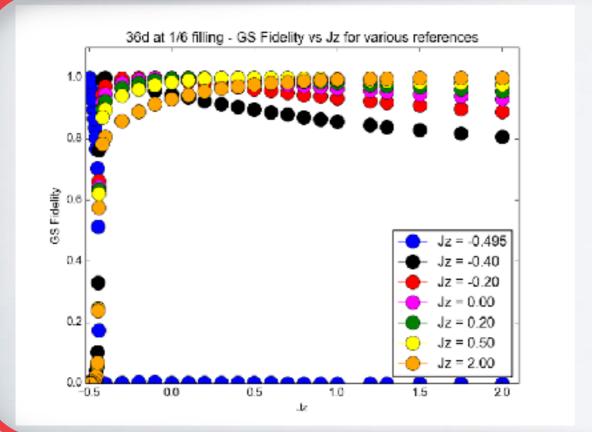


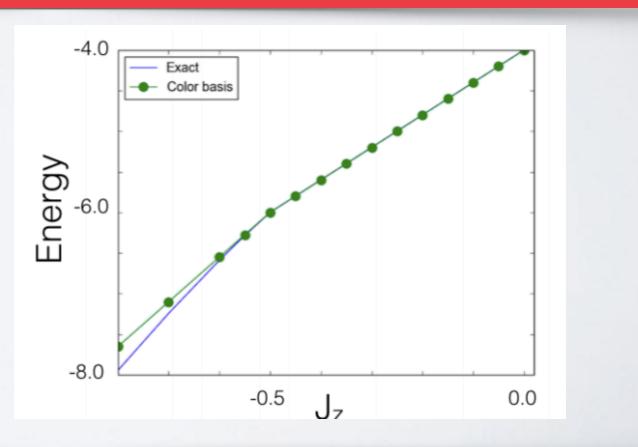
But there are even more ground states....

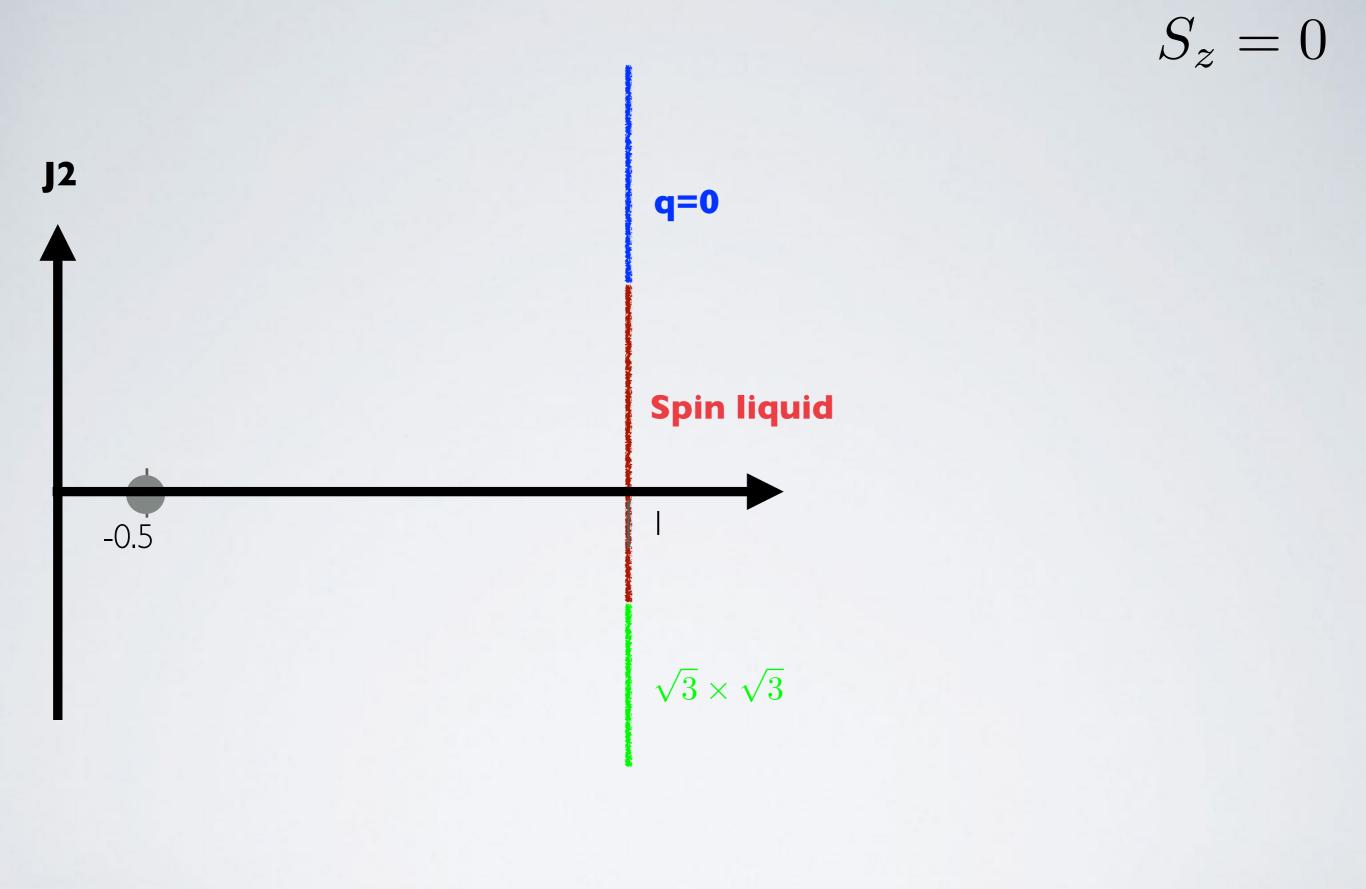
Lattice	Method	$n_b = 1$	$n_b = 2$	$n_b = 3$	$n_b = 4$	$n_b = 5$	$n_b = 6$	# 3-colorings
	- N X	-		-	-		-	<u> </u>
3×3 kagome obc	ED	15	102	414	1117			3808
(33 sites)	R(S)	15	102	414	1117	2136	3078	
3×3 kagome pbc	ED	10	38	60	41	40	40	40
	R(S)	10	34	40	40	40	40	
5×2 kagome pbc	ED	11	47	92	83	65	64	64
	R(S)	11	42	58	63	64	64	
4×3 kagome pbc	ED	13	68	169	172	137	136	136
	R(S)	13	68	134	136	136	136	



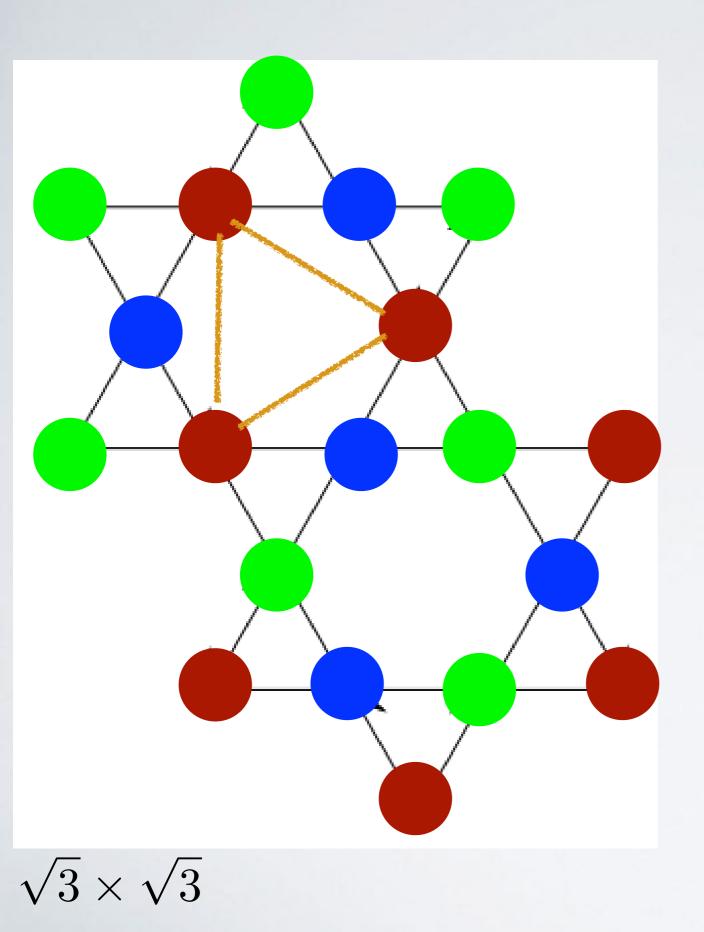
The mother of all phases?

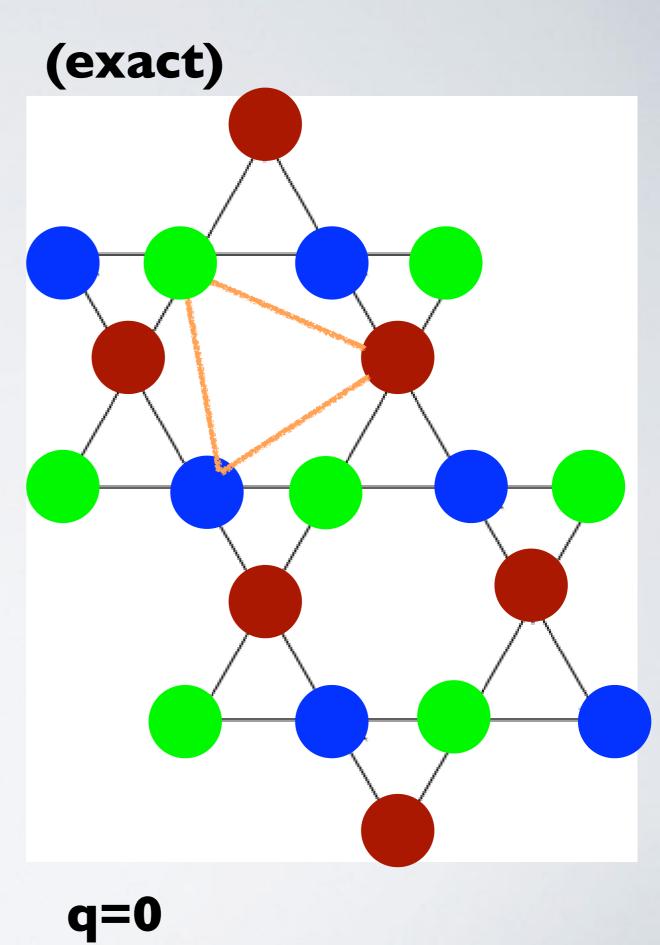


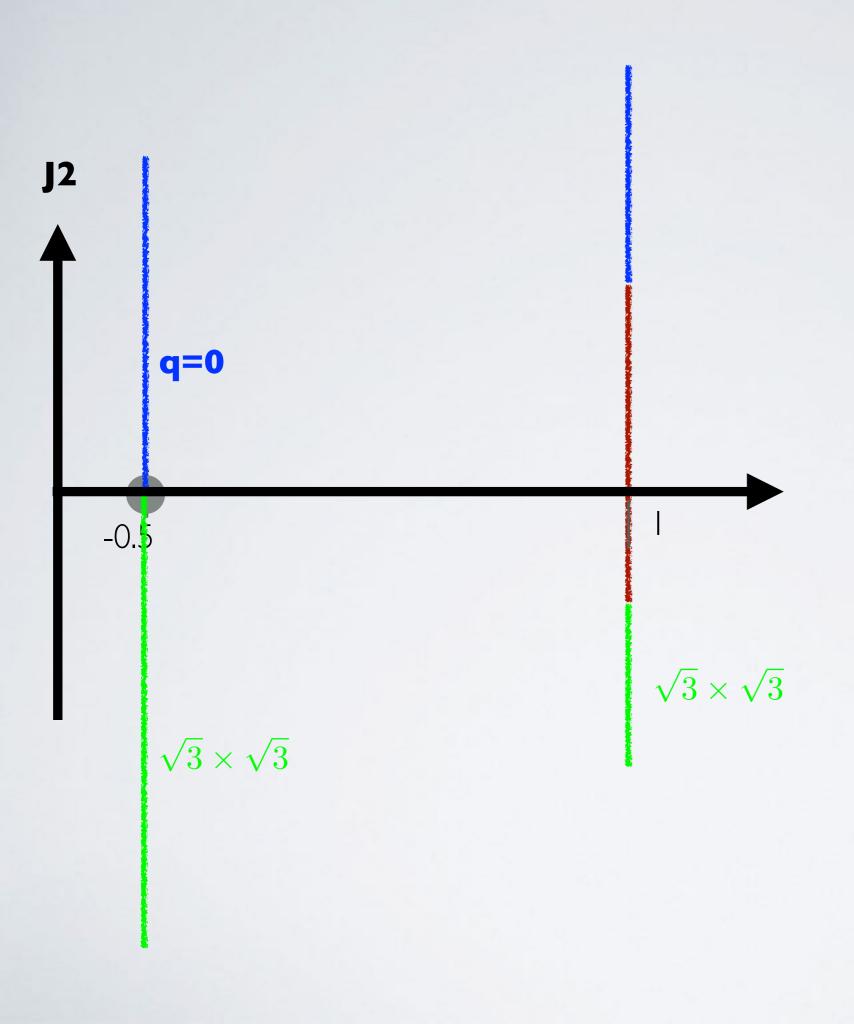


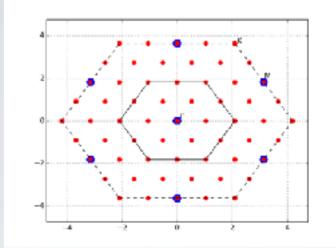


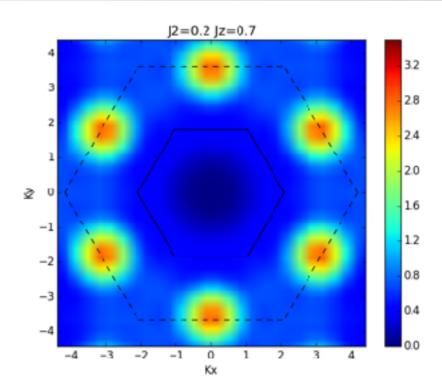
Tune JI-J2

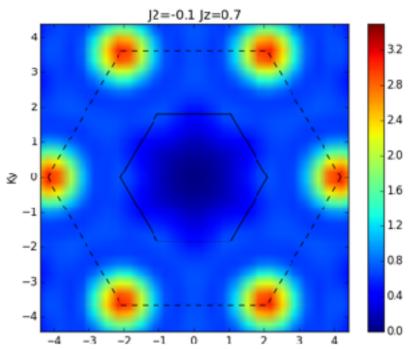


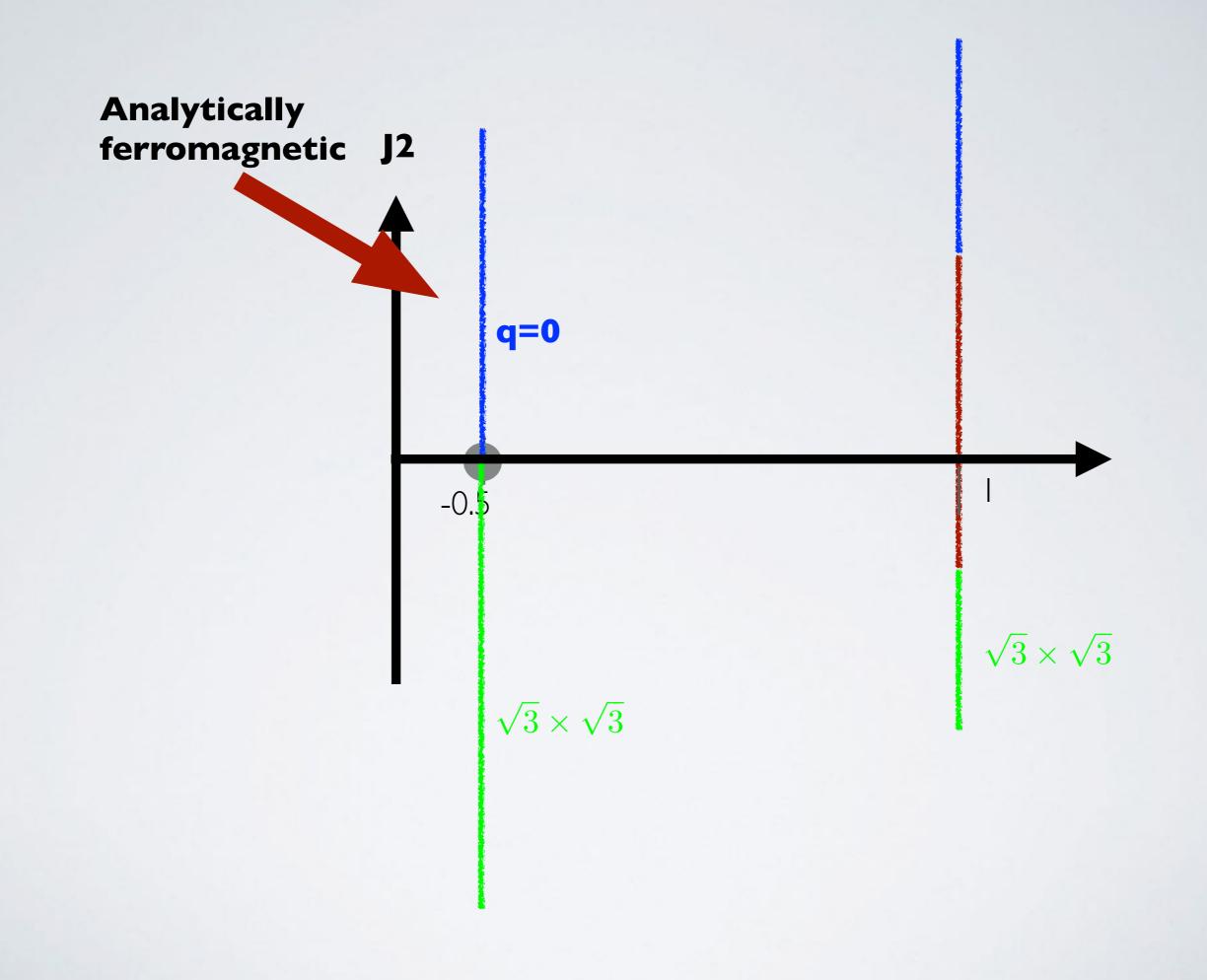


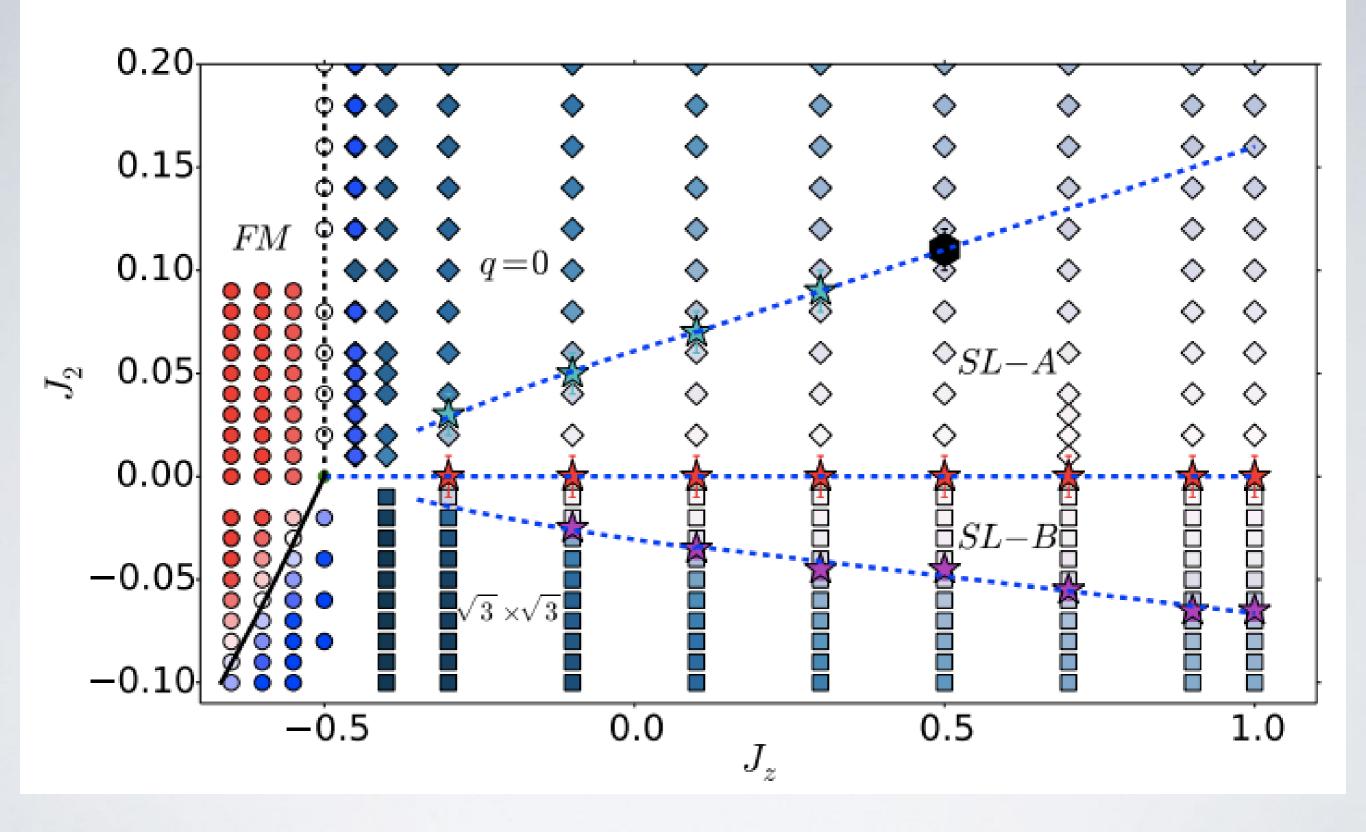


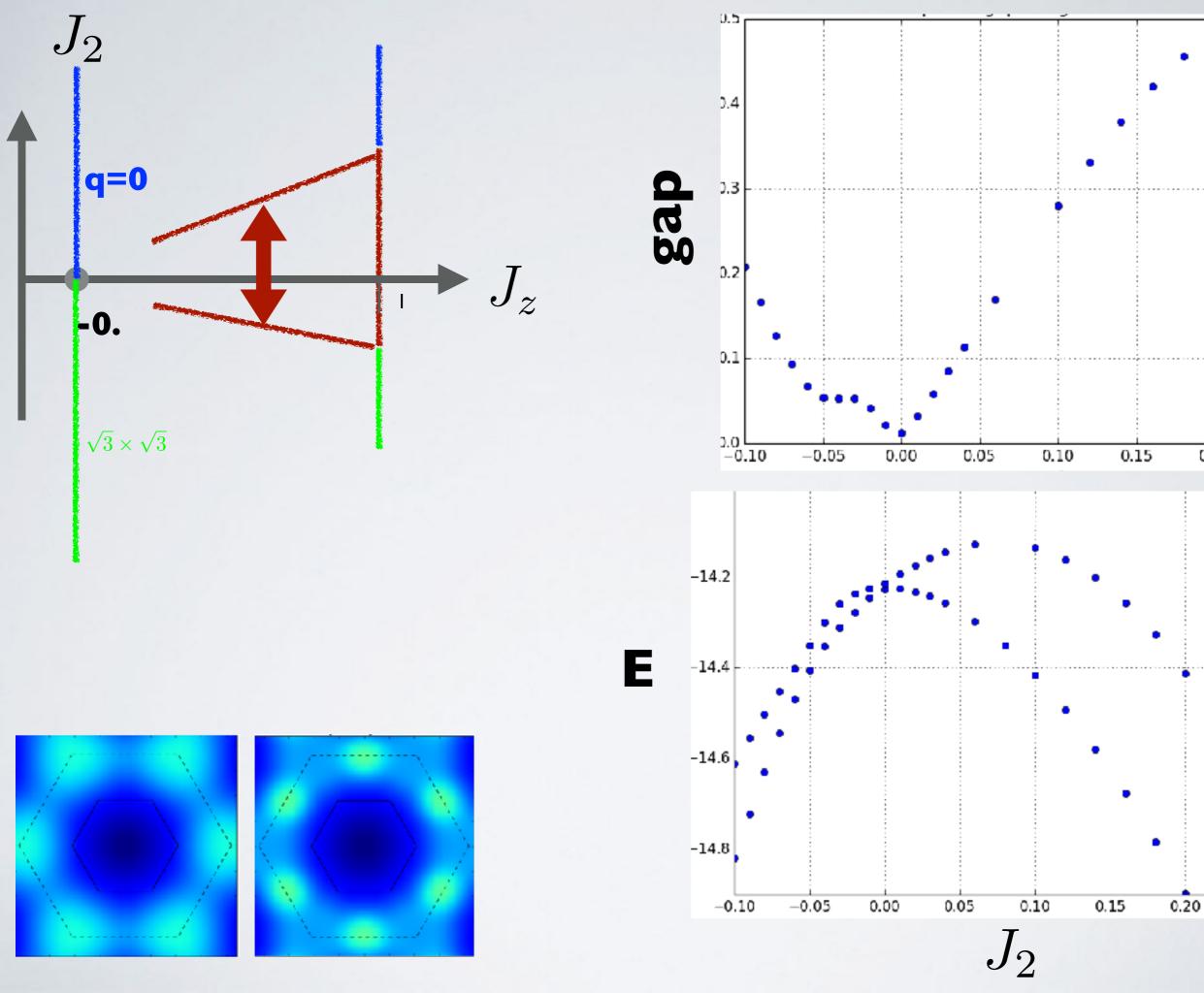










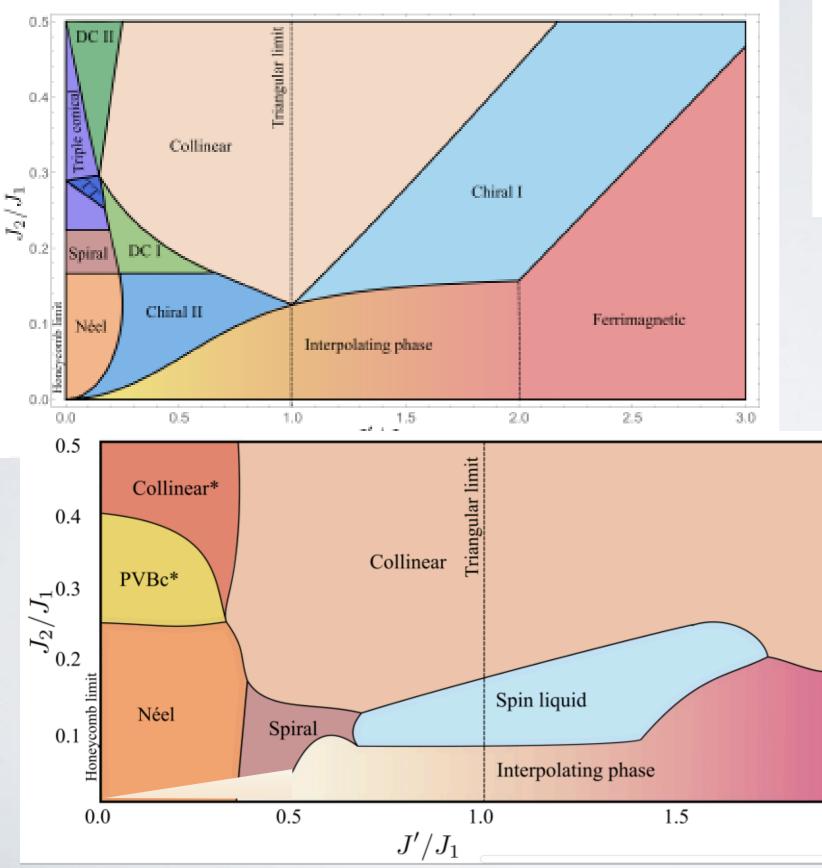


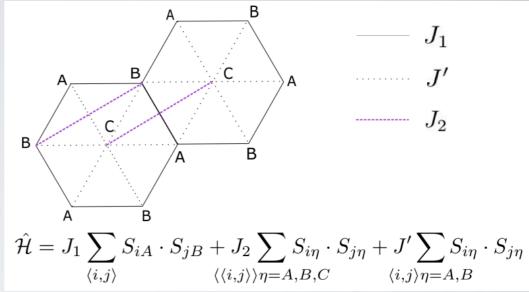
0.20

0.25

0.25

An aside on another model...





Stuffed Honeycomb

Conclusions

