
We apply a series of projection techniques on top of tensor networks to 
compute energies of ground state wave functions with higher accuracy than 
tensor networks alone with minimal additional cost. We consider both matrix 
product states as well as tree tensor networks in this work. Building on top of 
these approaches, we apply fixed-node quantum Monte Carlo, Lanczos steps, 
and exact projection. We demonstrate these improvements for the triangular 
lattice Heisenberg model, where we capture up to 57% of the remaining energy 
not captured by the tensor network alone. We conclude by discussing further 
ways to improve our approach. 
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Tensor Networks

• Matrix product states

• Tree tensor networks:   TTN have physical indices at the nodes of the tree.  
They can capture significant local entanglement structure missed by MPS.  In 
our tests, they capture 30-40% of the energy missed by MPS for the same 
bond dimension!
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Combining QMC and Tensor Networks as a route toward predictive computing
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• Heisenberg Model on a Triangular Lattice

• 10 x 10 lattice

• open boundary conditions

• Sample R with probability

• Apply 

• Compute Observables
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Cost:                  per Monte Carlo stepO(D↵)

Basis:

Ways to (exactly) compute basis 

• MPS/MPO Formalism

• Quantum Monte Carlo

• Hybrid QMC/MPO

Solve:                                   in this basisH| i = ES| i

Exactly:  3 basis elements

Approximately: 30 basis elements

{| i, H| i, H2| i, H3| i, H4| i, ...}

Way to (approximately) compute basis 

• Apply                via MPO

• Truncate to smaller bond dimension b2

• Iterate

H| i

Lanczos++

QMC + Tensor Networks

The short summary

Exact (Stochastic) Projection

Fixed Node

Exact Lanczos (3 basis elements)

Approximate Lanczos (30 basis elements)

These 4 approaches 
allow us to push beyond 
what is possible with 
tensor networks alone.  
We believe future 
applications using 
PEPS and other tensor 
networks will show even 
more significant gains.
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