How best to attenuate the exponential

Bryan Clark
Simon's Meeting: September 4, 2014

Our group works on simulating strongly correlated systems. We are currently attacking the Hubbard model as a stepping stone toward more sophisticated models.

There's an exponential wall to simulating quantum systems.

A (only slightly) biased view on the state of the art to attenuate it.

With a few new algorithms

- Partial Node FCIQMC
- Release FCIQMC
- Release + FN MPS
- Efficient Multi-MPS
- SEMPS

Approach I: Just write down the wave-function

Exponential number of terms

- Multislater -Jastrow++
$|\Psi\rangle=\exp [-J(R)] \sum_{k} \alpha_{k} \operatorname{det} M_{\uparrow, k} \operatorname{det} M_{\downarrow, k}$

No sign problem but "bond-dimension" problem.

- PEPS or Huse-Elser or MERA

- MPS

Optimize without quantum numbers and project afterwards gains non-trivial energy. On triangular lattice, $\sim 10 \%$

- Multi-MPS

$\alpha\left|\Psi_{M P S 1}\right\rangle+\beta\left|\Psi_{M P S 2}\right\rangle+\gamma\left|\Psi_{M P S 3}\right\rangle$

How do we choose the MPS

Optimize?

Faster approach to get reasonable states...
Exact: $\left\{\left|\Psi_{M P S}\right\rangle, H\left|\Psi_{M P S}\right\rangle, H^{2}\left|\Psi_{M P S}\right\rangle, \ldots\right\}$

Approx: $\left\{\left|\Psi_{M P S}\right\rangle, P H\left|\Psi_{M P S}\right\rangle, P H P H\left|\Psi_{M P S}\right\rangle, \ldots\right\}$
Better: Let $\mathrm{H}=\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{4}+\mathrm{h}_{5}$
$\left\{\left|\Psi_{M P S}\right\rangle, h_{i}\left|\Psi_{M P S}\right\rangle, h_{i} h_{j}\left|\Psi_{M P S}\right\rangle, \ldots\right\}$ 4x8 Hubbard Model:
$5 \mathrm{MPO}^{\prime}$ of size 6
1 MPO of size 18
For $\mathrm{n}=3$, factor of 2000 x faster!

- Fixed Node: A (stochastic) sample of the w.f.

Two recent 'improvements':
Fixed node for less-local Hamiltonians

Fixed node on tensor networks

- Constrained Path:

Shiwei: Determinants

Garnet: MPS

Approach II: Sample Sign Problem - Efficiency as exp $[-\beta \Delta E]$

- PQMC + Annihilation

Brings up Delta E
Kalos

+ initiator: Ali Alavi
- AFQMC Free projection

Approach II: Sample Sign Problem - Efficiency as $\exp [-\beta \Delta E]$

- PQMC + Annihilation

Brings up Delta E
Kalos

+ initiator: Ali Alavi
- Partial Node FCIQMC

Importance Sample +
Partial Fixed-Node +
Annihilation

- Sample from Tensor Networks + Annihilation
- RFCIQMC

Approach II: Sample Sign Problem - Efficiency as $\exp [-\beta \Delta E]$

- Annihilation + QMC
- AFQMC Free projection

Brings up Delta E
Kalos

+ initiator: Ali Alavi
- SEMPS

- AFQMC release

- Partial Node FCIQMC

Importance Sample +
Partial Fixed-Node +
Annihilation

- Sample from Tensor Networks + Annihilation

- RFCIQMC

QMC: A Sign Problem

DMRG: A bond dimension problem.

Our goal is to write down an algorithm that has both a sign problem and a bond dimension problem.

The worst of both worlds!

Annihilation

Without

With

- Annihilation helps because paths of different signs cancel.
- Annihilation fails because you can't keep enough walkers to get cancellation of all paths.

With but too few walkers

We'd really like perfect annihilation through all these paths.

We'd really like effectively higher bond dimension.

We'd really like perfect annihilation through all these paths.

$$
\begin{aligned}
& \left|M P S_{1}\right\rangle \approx\left|D_{1}\right\rangle+\left|D_{3}\right\rangle+\left|D_{20}\right\rangle+\ldots\left|\left\langle M P S_{1} \mid C\right\rangle\right|^{2} \frac{1}{\left\langle M P S_{1} \mid C\right\rangle} \\
& \left.\exp [-\tau H]\left|D_{1}\right\rangle+\exp [-\tau H]\left|D_{3}\right\rangle\right\rangle+\exp [-\tau H]\left|D_{20}\right\rangle+\ldots
\end{aligned}
$$

Represented 'exactly' by MPS of small bond-dimension.

You run out of bond-dimension much slower.
You're already starting at the best MPS you can get for your bond dimension. You're guaranteed to be better.

Massively Parallel

You do have a bond-dimension problem.
If $\operatorname{Sign}\left(\left\langle M P S_{1} \mid C\right\rangle\right) \neq \operatorname{Sign}\left(\left\langle\Psi_{0} \mid C\right\rangle\right)$, you have a weak sign problem.

$$
\beta=0.08
$$

$\beta=4.0$

4×32 hubbard model

What to do when you run out of bond dimension?

Resample here
Cone annihilation
Exact annihilation

A much smaller sign problem.

The best (or worst) of both worlds: SEMPS

QMC to evaluate DMRG
SEMPS MC

DRMG+QMC gives us powerful new algorithms including
Multi-MPS
SEMPS
Fixed-Node w / MPS
Release w/ MPS

Pareto-Optimal:
Multi-MPS SEMPS
Partial Node FCIQMC on Multi-MPS or Multi-Slater Jastrow

Release of CP AFQMC + SEMPS

