Frustrated Magnetism in Materials with Kagome Lattice

Bryan Clark Station Q - Microsoft Research/KITP UIUC: Feb. 28, 2013

Collaborators: Kinder, Chan, Neuscamann, Lawler

Condensed matter physics

SIMPLE RULES

Emergent Phenomena

COMPLICATED BEHAVIOR

Strongly Correlated Systems!!

Emergent phenomena is responsible for both ...

INTERESTING PHYSICAL PHENOMENA

Heavy Fermions

Fractional Quantum Hall

Superconductivity

Frustrated Magnets

DIFFICULTY UNDERSTANDING

Nonperturbative ...

Beyond mean field...

Computational methods are one important component to computing properties and better understanding strongly correlated systems.

Computational Methods

Auxiliary Field Quantum Monte Carlo

Diffusion Monte Carlo

Dynamical Mean Field Theory

Density Matrix Renormalization Group

Determinant QMC

Exact diagonalization

Full Configuration Interaction QMC

Path Integral Monte Carlo

(Path Integral) Molecular Dynamics

Numerical linked cluster expansion

Variational Monte Carlo

Computational Methods

Auxiliary Field Quantum Monte Carlo

Diffusion Monte Carlo

Dynamical Mean Field Theory

Density Matrix Renormalization Group

Determinant QMC

Exact diagonalization

Full Configuration Interaction QMC

Path Integral Monte Carlo

(Path Integral) Molecular Dynamics

Numerical linked cluster expansion

Variational Monte Carlo

Written code and used in previous projects

Computational Methods

Written code and used in previous projects

Writing code and using in current projects.

Supersolids

Frustrated Magnetism

Fractional Quantum Hall

Sunday, March 10, 13

Fractional Quantum Hall

Sunday, March 10, 13

Fractional Quantum Hall

Fractional Quantum Hall

Driving computational condensed matter

Cores

We want to find interesting phases (like spin liquids)

A good place to search for spin liquids are frustrated lattices.

Use a variational approach to find likely spin-liquids

Use long history of theoretical work on spin-liquids to motivate the variational space to work in.

Find a new phase this way; connect to experiment

Spin Liquids: No local order parameter The typical viewpoint: Featureless

A better viewpoint:

Insulator + Long Range Entanglement

Very far from a product state - quantum circuits take a long time to build them.

Fractionalized excitations: Spinons = Spin 1/2 fermionic excitations but no charge

***** Herbertsmithite

***** Zn-Paratacamite (Zn < 1/3)

*** Volborthite**

***** Herbertsmithite

***** Zn-Paratacamite (Zn < 1/3)

*** Volborthite**

Sunday, March 10, 13

***** Zn-Paratacamite (Zn < 1/3)

*** Volborthite**

Sunday, March 10, 13

The Variational Approach

Venerable history: BCS Superconductivity Quantum Hall Effect Model Wave-functions

Particularly valuable if the wave-function is conceptually simple and connects to analytical theory

Question: How do we guess the right wave-function?

The Variational Approach

Venerable history: BCS Superconductivity Quantum Hall Effect Model Wave-functions

Particularly valuable if the wave-function is conceptually simple and connects to analytical theory

Question: How do we guess the right wave-function?

Carve out a large chunk of Hilbert space. Let the computer find the right wave-function.

Variational Monte Carlo

Variational Principle: $E_0 = \langle \Psi_0 | H | \Psi_0 \rangle \leq \langle \Psi_T | H | \Psi_T \rangle$

Highly *nonlinear* optimization with an objective function $\langle E[\Psi[\vec{\alpha}]] \rangle$ and derivatives $\partial \langle E \rangle / \partial \alpha_i$ which can only be evaluated *noisily* and *slowly*.

A short (theoretical) history

2000-2005: Triangular QDM Large N Projective Symmetry Group Toric Code Rokhsar and Kivelson Fradkin; Kotliar Anderson; Gros Marston; Affleck; Lee

Sondhi; Moessner Hermele Wen Kitaev

2012 - : Numerical Evidence

Three Goals

* Theory: Predominately in terms of RVB. Push this approach as hard as one can and see how far we can get.

* Find physically simple and energetically promising wave-functions in a largely unbiased way.

* Connect to experiment.

Projected Gutzwiller

Fermion Hamiltonian:

Sunday, March 10, 13

Slave Particles

$$H = J_{1} \sum_{\langle i,j \rangle} S_{i} \cdot S_{j}$$
Slave-Fermion + Mean Field
$$S_{i} = \frac{1}{2} f_{i\alpha} \vec{\sigma}_{\alpha\beta} f_{i\beta} \quad f_{i\alpha}^{\dagger} f_{i\alpha} = 1 \quad f_{i\alpha} f_{i\beta} \epsilon_{\alpha\beta} = 0$$

$$H_{F} = -t_{ij} \sum_{\langle i,j \rangle, s} f_{is}^{\dagger} f_{js} + \sum_{ij} \Delta_{ij} f_{i\uparrow}^{\dagger} f_{j\downarrow}^{\dagger} - f_{i\downarrow}^{\dagger} f_{j\uparrow}^{\dagger}) + h.c.$$
Solve mean field Hamiltonian and implement constraint by projection.
$$\Psi_{PBCS} = P \prod_{i} (u_{k} + v_{k} c_{k,\uparrow}^{\dagger} c_{-k,\downarrow}^{\dagger}) | 0 \rangle$$
Project out double and zero occupancy.
$$\langle R | \Psi_{PBCS} \rangle = \det M$$

$$M_{ij} = \phi(\vec{r}_{\uparrow,i} - \vec{r}_{\downarrow,j}) \equiv \phi(\vec{r}_{ij})$$

Slave Particles

Projected BCS: The de-facto standard

2004 (ICM): Becca, Sorella; *J1-J2 square*2004 (PRL): Yunoki, Sorella; *Triangle, square*2006 (PRB): Sorella; *Anisotropic Triangular*2006: Ran, Hermele, Lee, Wen; *Kagome*2009 (PRB): Gros, Becca; *Anisotropic Triangular*2009 (PRB): Iqbal, Becca, Poilblanc; *Kagome*

2010: Iqbal, Becca, Poilblanc; *Kagome*2010 (PRB): Grover, Trivedi, Senthil, Lee; *Triangular + Ring Exchange*2011: Iqbal, Becca, Poilblanc; *Kagome*

2012: Iqbal, Becca, Poilblanc; *Kagome* 2012 (Nature): Jiang, Block, Mishmash, ..., Motrunich, Fisher; *Ring Exchange*
Projected BCS: The de-facto standard

2004 (ICM): Becca, Sorella; *J1-J2 square* 2004 (PRL): Yunoki, Sorella; *Triangle, square* 2006 (PRB): Sorella; *Anisotropic Triangular* 2006: Ran, Hermele, Lee, Wen; *Kagome* 2009 (PRB): Gros, Becca; *Anisotropic Triangular* 2009 (PRB): Iqbal, Becca, Poilblanc; *Kagome*

2010: Iqbal, Becca, Poilblanc; *Kagome*2010 (PRB): Grover, Trivedi, Senthil, Lee; *Triangular + Ring Exchange*2011: Iqbal, Becca, Poilblanc; *Kagome*

2012: Iqbal, Becca, Poilblanc; *Kagome* 2012 (Nature): Jiang, Block, Mishmash, ..., Motrunich, Fisher; *Ring Exchange* What states can Projected BCS give you?

One possibility: A valence bond crystal

Monogamous pairs

Gapped

What states can Projected BCS give you?

One possibility: A spin liquid

featureless

fractionalized excitations

long range entangled

What states can Projected BCS give you? One possibility: A spin liquid

The projective symmetry group carves up the spin liquids.

The Variational Approach

Venerable history: BCS Superconductivity Quantum Hall Effect Model Wave-functions

Particularly valuable if the wave-function is conceptually simple and connects to analytical theory

The perennial complaint about variational approach:

Biased - You get out what you put in.

Often true ... We will minimize that bias by taking a huge number of parameters. ~1000 - 10,000 parameters

We take the idea of Projected BCS seriously and span the *entire* space of projected BCS. This is the first time this has been done in frustrated magnetism (lattice models at all).

HILBERT SPACE IS A BIG PLACE

Energies -0.409 Nearest neighbor Anderson RVB (BKC) -0.429 Dirac Spin Liquid (Ran, Hermele, Lee, Wen; Poiblanc, et al) -0.4305 VMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler) -0.433 DMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

Another nearby spin liquid?

Metric for spin liquid-ness: Assymetry in pre-projected $\vec{s_i} \cdot \vec{s_j}$

Search for a low-energy spin liquid:

* Start with the striped spin-liquid crystal

* Take a random step in Hamiltonian space.

* Accept this step if you become more "featureless."

Walks uphill in energy to the Dirac spin liquid!

Dirac spin liquid is closest state.

Energies -0.409 Nearest neighbor Anderson RVB (BKC) -0.429 Dirac Spin Liquid (Ran, Hermele, Lee, Wen; Poiblanc, et al) -0.4305 VMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler) -0.433 DMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

A striped spin liquid crystal!

Something new!

The typical viewpoint (for spin liquids): Featureless

Our new state: Doubles unit cell. Makes stripes. Not a spin liquid.

But: Almost as symmetric as a spin liquid Energy variance: 10⁻³ Not a valence bond solid!

Breaks F symmetry

There has been a huge amount of work understanding and classifying "spin-liquid" phases recently and broken symmetry phases previously. We now have a concrete example of something simultaneously both. Many open theoretical questions!

Projected BCS: The de-facto standard

2004 (ICM): Becca, Sorella; *J1-J2 square*2004 (PRL): Yunoki, Sorella; *Triangle, square*2006 (PRB): Sorella; *Anisotropic Triangular*2006: Ran, Hermele, Lee, Wen; *Kagome*2009 (PRB): Gros, Becca; *Anisotropic Triangular*2009 (PRB): Iqbal, Becca, Poilblanc; *Kagome*

HILBERT SPACE IS A BIG PLACE

2010: Iqbal, Becca, Poilblanc; *Kagome*2010 (PRB): Grover, Trivedi, Senthil, Lee; *Triangular + Ring Exchange*2011: Iqbal, Becca, Poilblanc; *Kagome*

2012: Iqbal, Becca, Poilblanc; *Kagome* 2012 (Nature): Jiang, Block, Mishmash, ..., Motrunich, Fisher; *Ring Exchange*

Projected BCS: The de-facto standard

2004 (ICM): Becca, Sorella; *J1-J2 square* 2004 (PRL): Yunoki, Sorella; Triangle, square 2006 (PRB): Sorella; Anisotropic Triangular 2006: Ran, Hermele, Lee, Wen; Kagome BERT SPACE IS A BIG PI ACE 2009 (PRB): Gros, Becca; Anisotropic Triangular 2009 (PRB): Iqbal, Becca, Poilblanc; Kagome 2010 (Nature): Yan, White, Huse; Kagome 2010: Iqbal, Becca, Poilblanc; Kagome 2010 (PRB): Grover, Trivedi, Senthil, Lee; *Triangular + Ring Exchange* 2011: Iqbal, Becca, Poilblanc; Kagome 2011: Tay, Motrunich; Kagome (Schwinger-Boson) 2012: Iqbal, Becca, Poilblanc; Kagome 2012 (Nature): Jiang, Block, Mishmash, ..., Motrunich, Fisher; Ring Exchange 2013: Evenbly and Vidal; Kagome (MERA) 2013: Poiblanc and Schuch; Kagome (PEPS)

Energies -0.409 Nearest neighbor Anderson RVB (BKC) -0.429 Dirac Spin Liquid (Ran, Hermele, Lee, Wen; Poiblanc, et al) -0.4305 VMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler) -0.433 DMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

Energies

-0.409 Nearest neighbor Anderson RVB (BKC)

-0.418 PEPS (Poiblanc and Schuch)

-0.42 Schwinger Boson (Tay and Motrunich)

-0.429 Dirac Spin Liquid (Ran, Hermele, Lee, Wen; Poiblanc, et al)
-0.4305 VMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)
-0.432 MERA gives Valence Bond Solid (Vidal)

-0.433 DMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

-0.438 DMRG (White and Huse)

Materials

Herbertsmithite

Gapless No magnetic order

We have proposed a state that is gapless and has no magnetic order in agreement with experiment.

One concern:

Symmetry breaking should couple to lattice and have artifacts in neutron scattering.

Maybe symmetry restored in Herbertsmithite?

*** Volborthite**

Neel state at T=0

Interesting finite temperature transition into distorted kagome lattice in the F pattern.

***** Zn-Paratacamite

(Zn < 1/3)

Interesting finite temperature transition into distorted kagome lattice in the F pattern.

Tantalizing possibility:

Materials

Herbertsmithite

Gapless No magnetic order

We have proposed a state that is gapless and has no magnetic order in agreement with experiment.

One concern:

Symmetry breaking should couple to lattice and have artifacts in neutron scattering.

Maybe symmetry restored in Herbertsmithite?

*** Volborthite**

Neel state at T=0

Interesting finite temperature transition into distorted kagome lattice in the F pattern.

***** Zn-Paratacamite

(Zn < 1/3)

Interesting finite temperature transition into distorted kagome lattice in the F pattern.

Tantalizing possibility:

Even if kagome distorts for other structural reasons, makes good candidate for striped spin liquid crystal.

Conclusions 1

* Theory: Predominately in terms of RVB. Push this approach as hard as one can and see how far we can get.

Reasonable low energy state. Better then tensor product state (MERA,PEPS) A bit worse (on quasi-1D ladders then DMRG)

...maybe different physics. Not clear how to reconcile?

Find physically simple and energetically promising wave-functions in a largely unbiased way.

A new phase (in the language of RVB singlets)

Connection to experiment.

Matches much of the experimental data for Herbertsmithite:

Strong candidate for finite temperature phase of Volborthite; Zn paratacamite.

0.4305 VMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

-0.433 DMC on PBCS (BKC, Kinder, Neuscamann, Chan, Lawler)

-0.432 MERA gives Valence Bond Solid (Vidal)

-0.438 DMRG (White and Huse)

Nonequilibrium dynamics

TIME EVOLUTION

1. Start with $\Psi_{\text{MPS}} = \sum Tr[M_1^{\sigma_1}M_2^{\sigma_2}\dots M_k^{\sigma_k}]|\sigma_1\sigma_2\dots\sigma_k\rangle$

for ferromagnet ground state. () $k \times k$ matrix.

2. Apply exp $\left| -it \left(-\sum_{i} \sigma_{i}^{x} + \delta(t) \sum_{i} \frac{1}{2} (\sigma_{i}^{z} + 1) \right) \right|$ exactly. This increases the bond dimension to something too large.

Q: CAN RAMPS PRODUCE INTERESTING STATES?

Optimistic about the future of computational condensed matter to make progress on many of the hardest problems in physics.

REALISM

FEMPERA1

Heavy Fermions

Sunday, March 10, 13

Sunday, March 10, 13

Sunday, March 10, 13

Ground States: $H[\lambda]|\Psi_0[\lambda]\rangle = E_0[\lambda]|\Psi_0[\lambda]\rangle$ Ramps

Time Evolution: $|\Psi(t)\rangle = \exp[iH[\lambda]t]|\Psi(0)\rangle$

Adiabatic Theorem: Slow ramps stay in the instantaneous ground state.

All ramps eventually fall out of the ground state!

Physically: Correlation length grows faster than time spent in region.

