Variational Wavefunctions in the era of AI

Virtually in the ether

Bryan Clark (<u>bkclark@illinois.edu</u>) University of Illinois at Urbana Champaign

Di Luo

Dmitrii Kochkov

The Variational Approach

The variational approach is one of the key approaches to solving the quantum many-body problem.

Given a Hamiltonian H, find a good approximation Ψ to the ground state...

$$R \Longrightarrow \Psi \Longrightarrow \#$$

Choose a set of wave-functions you're going to consider...

$$\{\Psi_1, \Psi_2, \Psi_3, \dots \Psi_N\}$$
$$\{\Psi(\overrightarrow{\theta})\}$$

Pick the best one from that list.

Outline

Choose a set of wave-functions you're going to consider...

$$\{\Psi_1, \Psi_2, \Psi_3, \dots \Psi_N\}$$

 $\{\Psi(\overrightarrow{\theta})\}$

Pick the best one from that list.

How is the age of AI changing these two steps?

Wave-Functions through History

The age of (dressed) mean field.

Slater Determinants (i.e. Hartree Fock)

The age of tensor networks

The age of AI

The Age of Mean Field

Slater Determinants
BDG States
Pfaffians

$$\Psi(r_1, r_2, \dots r_n) = \det M;$$

$$M_{ij} = \phi_i(r_j)$$

Single particle orbitals

 $\Psi = \det M \exp[-U(R)]$

 $\Psi = P[\det M]$ (spin liquids)

J1-J2 triangular spin liquid: 93% overlap with projected SD

Fractional Chern Insulators

The Age of Mean Field

Slater Determinants
BDG States
Pfaffians

 $\Psi = \det M \exp[-U(R)]$

 $\Psi = P[\det M]$ (spin liquids)

$$\Psi(r_1, r_2, \dots r_n) = \det M;$$

$$M_{ij} = \phi_i(r_j)$$

Multi-Determinants

More determinants

Enough determinants give you everything

The Age of Tensor Networks

Low entanglement ansatz

Matrix Product States

Larger Bond-dimension Enough bond-dimension gives you everything

The Age of Tensor Networks

Low entanglement ansatz

Matrix Product States

Lnough bond-dimension gives you everything

The Age of AI

Resnet

Batch Norm 3x3 Conv

ReLu Batch Norm

The Age of AI

FFNN

Convolution neural network

input

A New Infinite Ansatz

Full Convolution

Convolution

hidden4

System size

How good are neural networks..

Kagome

Exponential improvement with neuron number

Depth doesn't help (hurts a little?)

24-30 site systems require a lot of parameters (~10⁴)

Square: Much fewer parameters...

Wave-Functions with Signs

Neural Nets do well with wave-functions with simple sign structures (but so does QMC). What about wave-functions with complicated sign structure?

RBM: Can't even get sign structures without complex weights (and this hasn't worked out yet)

Square Heisenberg

Neural-networks competitive with partons...

Worse then fixed-node+partons

Much worse with DMRG

Partons+RBM-Jastrow also done in Hubbard by Imada

Francesco Ferrari, 1, * Federico Becca, 2 and Juan Carrasquilla 3, 4

Study of the Two-Dimensional Frustrated J1-J2 Model with Neural Network Quantum States

Kenny Choo, ¹ Titus Neupert, ¹ and Giuseppe Carleo²

Neural network wave functions and the sign problem

Attila Szabó and Claudio Castelnovo

Neural Network Backflow

$$\psi_{SD}(\mathbf{r}) = \det \left[M^{SD,\uparrow} \right] \det \left[M^{SD,\downarrow} \right];$$

$$M_{ik}^{SD,\sigma} = \phi_{k\sigma}(r_{i\sigma})$$

$$\phi_{k\sigma}^{b}(r_{i,\sigma}; \mathbf{r}) = \phi_{k\sigma}(r_{i,\sigma}) + a_{ki,\sigma}^{NN}(\mathbf{r})$$

Cost: $O(N^4)$ per sweep

Duo, BKC, PRL

 4×4 Hubbard model at U/t=8, n=0.875

We not only get better energies; we restore the symmetry.

and change the signs...

$$\frac{\int |\Psi_{S0}(x)|^2 sgn(\Psi_{SN}(x)) sgn(\Psi_{S0}(x)) dx}{\int |\Psi_{S0}(x)|^2 dx} = 0.815$$

9% difference between signs...

Bigger systems....

Relative energy error	Slater-Jastrow	NNB	NNB variance extrapolation
16×4 Hubbard, n=0.875	$(5.9 \pm 2 \times 10^{-3})\%$	$(2.734 \pm 8 \times 10^{-3})\%$	0.209%
12×8 Hubbard, n=0.875	$(6.3 \pm 3 \times 10^{-3})\%$	$(3.94 \pm 10^{-2})\%$	0.655%
$4 \times 4 \times 3$ Kagome	$(1.8 \pm 10^{-5})\%$	$(1.093 \pm 4 \times 10^{-3})\%$	0.286%

iDMRG answer

Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M. Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis, N. V. Prokof'ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svistunov, Luca F. Tocchio, I. S. Tupitsyn, Steven R. White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel Gull (Simons Collaboration on the Many-Electron Problem)

Phys. Rev. X 5, 041041 — Published 14 December 2015

Beyond the silver age...

(and how close are we to reaching it?)

We'd like to consider the wave-functions accessible `quickly' by computers.

Q: What's a good way to represent this space?

Our answer (stolen from machine-learning): computational graph states...

Computational Graph States

Taking a page, from the machine learning play-book, we can represent all "fast wave-functions" as a computational graph. Everybody is on the same footing now.

Box of operations...

\mathbf{WF}	Hidden	Hidden	Params
	Layers	${f Units}$	1d - 2d
FCNN	2	80	9800 - 11744
RBM	0	80	3320 - 5264
FC-RBM	2	80	16280 - 18224
Conv1D	5	16 filters (size 5)	5280 -
Conv2D	5	16 filters (5 by 5)	- 26080
ResNet	1 + 2(2)	16 filters (size 5)	5280 - 25760
Multi-RBM	2	16 filters (5 by 5)	6640 - 10528
Multi-FCNN	2	80	19600 - 23488
P-BDG			1600 - 4096
MPS			4800 -


```
class ProjectedBDG(Wavefunction):
        """P-BDG module."""
877
878
879
        def __init__(
880
            self,
881
            num_sites: int,
882
            name: str = 'projected_bdg'):
883
          """Constructs a projected BDG module.
884
885
         Args:
886
            num_sites: Number of sites.
887
           name: Name of the module.
888
          super(ProjectedBDG, self).__init__(name=name)
889
890
          self._num_sites = num_sites
891
         with self._enter_variable_scope():
892
            self. pairing matrix = tf.get variable(
893
                'pairing_matrix', shape=[1, num_sites, num_sites], dtype=tf.float32)
894
895
        def _build(self, inputs: tf.Tensor) -> tf.Tensor:
          """Connects the P-BDG module into the graph with input `inputs`.
896
897
898
899
           inputs: Tensor with input values of shape=[batch] and values +/- 1.
900
901
902
            Wave-function amplitudes of shape=[batch].
         .....
903
         batch_size = inputs.shape[0]
905
         n_sites = self._num_sites
         mask = tf.einsum('ij,ik->ijk', tf.nn.relu(inputs), tf.nn.relu(-inputs))
906
907
          bool_mask = tf.greater(mask, tf.zeros([batch_size, n_sites, n_sites]))
          tiled_pairing = tf.tile(self._pairing_matrix, [batch_size, 1, 1])
908
909
         det_size = [batch_size, n_sites // 2, n_sites // 2]
910
         pre_det = tf.reshape(tf.boolean_mask(tiled_pairing, bool_mask), det_size)
911
912
          sign, ldet = tf.linalg.slogdet(pre_det)
913
         det_value = tf.exp(self.add_exp_normalization(ldet))
914
         return sign * det_value
915
916
        @classmethod
917
        def from_hparams(
918
            cls,
919
            hparams: tf.contrib.training.HParams,
            name: str = ''
920
921
        ) -> 'Wavefunction':
922
         """Constructs an instance of a class from hparams."""
923
         pbdg_params = {
924
              'num sites': hparams.num sites,
925
         }
926
         if name:
927
            pbdg_params['name'] = name
928
          return cls(**pbdg_params)
929
```

```
557
          super(Conv2DNetwork, self).__init__(name=name)
558
          self._num_layers = num_layers
559
          self._num_filters = num_filters
560
          self._kernel_size = kernel_size
561
          self._nonlinearity = nonlinearity
562
          self._output_activation = output_activation
563
          self._size_x = size_x
564
          self._size_y = size_y
565
566
          reduction = functools.partial(tf.reduce_sum, axis=[1, 2, 3])
567
          self._components = []
568
          with self._enter_variable_scope():
569
            for layer in range(num_layers):
570
              self._components.append(layers.Conv2dPeriodic(num_filters, kernel_size))
571
              if layer + 1 != num_layers:
572
                self._components.append(nonlinearity)
573
            if output_activation == tf.exp:
574
              self._components += [reduction, self.add_exp_normalization, tf.exp]
575
576
              self._components += [reduction, output_activation]
577
578
        def _build(
579
            self,
580
            inputs: tf.Tensor,
581
        ) -> tf.Tensor:
582
          """Builds computational graph evaluating the wavefunction on inputs.
583
584
          Args:
585
            inputs: Input tensor, must have shape (batch, num_sites, ...).
586
587
          Returns:
588
           Tensor holding values of the wavefunction on `inputs`.
589
590
          Raises:
591
           ValueError: Input tensor has wrong shape.
592
593
          inputs_new_shape = [-1, self._size_x, self._size_y, 1]
594
          inputs = tf.reshape(inputs, shape=inputs_new_shape)
595
          return snt.Sequential(self._components)(inputs)
596
597
        @classmethod
598
        def from hparams(
599
600
            hparams: tf.contrib.training.HParams,
601
            name: str = ''
602
        ) -> 'Wavefunction':
603
          """Constructs an instance of a class from hparams."""
604
          conv_2d_params = {
605
              'num_layers': hparams.num_conv_layers,
606
              'num_filters': hparams.num_conv_filters,
607
              'kernel size': hparams.kernel size,
608
              'size_x': hparams.size_x,
609
              'size_y': hparams.size_y,
              'output_activation': layers.NONLINEARITIES[hparams.output_activation],
610
              'nonlinearity': layers.NONLINEARITIES[hparams.nonlinearity],
611
612
         }
613
614
            conv_2d_params['name'] = name
615
          return cls(**conv_2d_params)
```

Part 2 Optimizing wave-functions in the age of AI

Wave-Function optimization through history

Ancient History

Stochastic Gradient Descent

Given an objective function, walk downhill.

$$E(\overrightarrow{\theta}) \equiv \langle \Psi(\overrightarrow{\theta}) | H | \Psi(\overrightarrow{\theta}) \rangle$$

$$\theta_i \leftarrow \theta_i - \delta \frac{\partial E}{\partial \theta_i}$$

O(p)

Slow convergence

(actually, pre-ancient history optimized the variance)

Imaginary Time Evolution

Stochastic Reconfiguration iTEBD for VMC

 $O(p^3)$

Numerically unstable Undersampling problem

$$|\Psi_{new}\rangle = \mathcal{P}(1 - \tau H) |\Psi_{old}\rangle$$

Projection into manifold...

Need:
$$S_{ij}^{-1}$$
 where $S_{ij} \equiv \left\langle \frac{\partial \Psi}{\partial \theta_i} \middle| \frac{\partial \Psi}{\partial \theta_j} \right\rangle$

Linear Method

DMRG for VMC

$$\widetilde{H} | \Psi \rangle = ES | \Psi \rangle$$

$$\widetilde{H}_{ij} \equiv \left\langle \frac{\partial \Psi}{\partial \theta_i} \middle| H \middle| \frac{\partial \Psi}{\partial \theta_j} \right\rangle$$

 $O(p^3)$

Numerically unstable Complicated

Supervised Learning...

Train your supervised algorithm on these labels.

If you give it a new image, it should be able to tell if it's a cat or dog.

Cost: O(p)

Supervised Learning...

Train your supervised algorithm on these labels.

If you give it a new image, it should be able to tell if it's a cat or dog.

Cost: O(p)

We call this approach, supervised wave-function optimization (SWO)

All one needs now is a labelled wave-function to match....

Unfortunately, getting the exact wave-function is difficult....

Instead...our goal will be to get a better wave-function.

Better Wave-functions:

Imaginary Time Evolution $(1 - \tau H) | \Psi_{NN} \rangle$

Current best wave-function

This gives us an O(p) approach which avoids lots of other problems. (no ill-defined inverse; no over-parameterization; no under sampling)

Lanczos Steps $|\Psi_{NN}\rangle + \alpha H |\Psi_{NN}\rangle + \beta H^2 |\Psi_{NN}\rangle$ Lanczos-SWO

Previously Optimized (but stuck) states... MPS, simpler NN, etc.

Better tunneling,

Matching-SWO

Putting it all together...

$\mathbf{W}\mathbf{F}$	Hidden	Hidden	Params
	Layers	Units	1d - 2d
FCNN	2	80	9800 - 11744
RBM	0	80	3320 - 5264
FC-RBM	2	80	16280 - 18224
Conv1D	5	16 filters (size 5)	5280 -
Conv2D	5	16 filters (5 by 5)	- 26080
ResNet	1 + 2(2)	16 filters (size 5)	5280 - 25760
Multi-RBM	2	16 filters (5 by 5)	6640 - 10528
Multi-FCNN	2	80	19600 - 23488
P-BDG			1600 - 4096
MPS			4800 -

Can play with this yourself: github.com/ClarkResearchGroup/cgs-vmc/

The next steps (for the variational approach)....

Fulfill the promise of the silicon age....

Computational graphs are a great structure, but how do you pick the correct graph?

Current Solution: Graph optimization by graduate student.

Future Solution: Graph optimization by computer.

Matching SWO is a key piece of this puzzle. Once you have a new graph you want to quickly get its parameters to match the old graph. You can't afford to do this through Hamiltonian optimization.

The quantum age...

Variational Quantum Eigensolvers

A standard quantum circuit is the moral equivalent of computational graph states.

But we are currently in ancient history as far as optimization is concerned...

DMRG (or linear method) for quantum circuits....

The next steps (for the variational approach)....

Inverting the variational approach...

Typical approach: $H \rightarrow |\Psi\rangle$

New approach: $|\Psi\rangle \rightarrow H$

symmetry $O \rightarrow H$

Zero mode (a)

Chemical Potential

Superconducting Order

Zoo of new spin liquids....

$$\sum_{\triangle} \left(\eta_{x} \cdot \mathbf{X} \cdot + \eta_{y} \cdot \mathbf{Y} \cdot + \eta_{z} \cdot \mathbf{Z} \right)$$

$$+ \sum_{\triangle} \left(\chi_{x} \cdot \mathbf{X} \cdot \mathbf{X} \cdot + \chi_{y} \cdot \mathbf{Y} \cdot \mathbf{Y} \cdot + \chi_{z} \cdot \mathbf{Z} \cdot \mathbf{Z} \right)$$

Summary (the main pieces)...

There's a lot of hype in variational wave-functions + AI. Despite what you might have heard, they don't solve all problems.

That said, smart choices are making real progress, optimization is improving, etc.

