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Many-body localization 
Many-body localization1 (MBL) is a dynamical phase transition of an 
isolated quantum system with finite interaction and quenched disorder. 
The signature of MBL is in the highly excited states. 
Excited states’ entanglement entropies go from volume law to area law. 
  

  
  

L = 16, exact diagonalization 
# of disorder realizations > 300 
Excited states’ energies near 0 
Red: mid-bond entanglement entropy (EE) 
Blue: standard deviation of mid-bond EE 
 
1.  Many good works have been done on this topic following the seminar paper by  D. M. Basko, I. L. Aleiner, 
and B. L. Altshuler, Ann. Phys. 321, 1126 (2006). 
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To study MBL numerically 
We need excites states, usually by doing 
1.  exact diagonalization (ED): shift-and-invert, … 
2.  strong disorder renormalization group for excited states1,2 

 

Our goals:  
1.  adapt density matrix renormalization group (DMRG) to target excited 

states 
2.  produce good matrix product states (MPS), for larger system sizes and 

better scaling behavior, in the MBL phase (area law region) 
 
 
 
1. Phys. Rev. X 4, 011052 (2014), David Pekker, Gil Refael, Ehud Altman, Eugene Demler, and Vadim 
Oganesyan 
2. arXiv:1412.3117, Ronen Vosk, David A. Huse, Ehud Altman 



Brief introduction of DMRG 
 
DMRG is  
1.  a variational ground state algorithm 
2.  natural in the matrix product state/operator (MPS/MPO) language 
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Two ways of adapting DMRG 
To get excited states whose energies are near λ, we can 

1.  use (H – λ)2 instead of H as MPO 

 
 
2.  optimize MPS with respect to (H - λ)-1 (like shift-and-invert in ED) 

 



Two ways of adapting DMRG 
To get excited states whose energies are near λ, we can 

1.  use (H – λ)2 instead of H as MPO 

 
 
2.  optimize MPS with respect to (H - λ)-1 (like shift-and-invert in ED) 

 

H 

λ 

(H – λ)2 
 

0 

Energy levels close to λ 
get even closer. 
Other levels are pushed 
away. 
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To get excited states whose energies are near λ, we can 

1.  use (H – λ)2 instead of H as MPO 
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Energy levels close to λ 
get even closer. 
Other levels are pushed 
away. 

Energy levels near λ are 
pushed far apart. 
Other levels are pushed to 
the middle. 



Difficulty of using (H - λ)2 as MPO 
As energy levels near λ cluster together, convergence speed will suffer. 
 
To illustrate this problem, for L=12 spin ½ Heisenberg model,  
 
 
1.  We use ED to calculate all energy eigen values/states in advance. 
2.  Run DMRG with (H-λ)2 as MPO. λ sits exactly on an excited state. 
3.  Check how close <(H-λ)2> is to zero. 
4.  Check the overlap of the MPS with ED eigenstates whose energies are 

near λ. 
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Difficulty of using (H - λ)2 as MPO 
Key observations: 
1.  MPS mixes the target state with its neighbor(s) 
2.  Mixing causes an “entanglement barrier” before convergence 
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Technique to speed up convergence 
During the slow convergence 
1.  the overlap of the MPS with the target state rises slowly from about 0 
2.  the overlap with neighbor(s) slowly decreases from about 1 
3.  subtracting the MPS stored N sweeps ago from the current one will “even 

up” the “weights” on the target and its neighbors 
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Subtract out the MPS stored 
20 sweeps ago. 
This kills the “entanglement 
barrier”. 



Optimize MPS with respect to (H - λ)-1 
We have implemented a DMRG-like method to construct MPSs that maximize 
the magnitude of (H - λ)-1, just like shift-and-invert method in ED 
 
As any matrix inverse problem, building (H - λ)-1 as an MPO is hard 
•  large bond dimension 
•  lack of efficient algorithm 
 
To apply  (H - λ)-1 to an MPS, say 
 
we can try minimize  
 |(H � �)|'i � | i|2

|'i = (H � �)�1| i, for a given | i



Optimize MPS with respect to (H - λ)-1 
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Optimize MPS with respect to (H - λ)-1 
At each step, we solve a dense positive-definite linear equation problem, 
instead of an eigenvalue problem, for the red block.  
Swapping |φ> and  |ψ> repeatedly is equivalent to power method with matrix 
(H - λ)-1 in ED. 
We call this inverse-DMRG method. 
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For best performance 
Two methods can be combined: 
1.  DMRG sweeping with (H - λ)2 as the MPO quickly removes overlap with 

levels far away from λ 
2.  inverse-DMRG method then removes overlap with remaining states, 

except for the one closes to λ 

Implementing conserved quantum number will give significant speedup 
1.  Dense linear equation solver’s cost scales as (problem size)3  
2.  Problem size at each optimization step is pM2 (M:bond dimension; p: 

number of physical degrees of freedom per site) 
3.  inverse-DMRG scales like p3M6 
 



Fast convergence observed 
Same L=12 Heisenberg model. DMRG sweeping with (H - λ)2 as the MPO.  
inverse-DMRG method used 4 times after the initial 24 DMRG sweepings. 
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MBL Data using (H - λ)2 as MPO 

•  Disordered random transverse Ising chain with NNN interaction 
•  We have data of system sizes L=14, 16, 24, 32, 40 
•  For L=14, 16, 24, most MPSs produced have energy standard deviations 

below 10-5 (estimation of inter-level spacing). 
•  For L=32, 40, hard to get MPSs whose energy standard deviations are below 

10-8 and 10-10 (estimations of inter-level spacing). 
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MBL Data using (H - λ)2 as MPO 

•  All data points included here have energy standard deviations below 10-5  
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MBL Data using inverse-DMRG 
L=14 disordered random transverse Ising chain with NNN interaction. 
Larger sizes computation under progress. 
 
All data points included here have energy standard deviations below 10-5 

 4

 5

 6

 7

 8

 9

 10

 11

 12

 3  4  5  6  7  8  9  10

Sp
in

 g
la

ss
 o

rd
er

 p
ar

am
et

er

Disorder strength W



Conclusion and Future work 
 
•  DMRG sweeping with (H - λ)2 tends to gets stuck due to “entanglement 

barrier” when mixing multiple eigenstates 
•  Combining DMRG sweeping with (H - λ)2 with inverse-DMRG has the best 

performance on targeting excited states 

•  Produce better scaling data describing physics in MBL phase 
•  Seek other usage of inverse-DMRG method, like adapting Arnoldi or 

Lanczos algorithm into MPS language 



Thank you! 



Difficulty of using (H - λ)2 as MPO 
•  Tuning bond dimensions does not change the behavior 

qualitatively 
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Difficulty of using (H - λ)2 as MPO 
Sweeping with (H - λ)2 where λ does NOT sit exactly on an 
energy level calculated by ED in advance. 
 
λ1 = E1 + 0.1 (E2-E1) 
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Difficulty of using (H - λ)2 as MPO 
Sweeping with (H - λ)2 where λ does NOT sit exactly on an 
energy level calculated by ED in advance. 
 
λ1 = E1 + 0.1 (E2-E1),  λ2 = E1 + 0.2 (E2-E1) 
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Difficulty of using (H - λ)2 as MPO 
Sweeping with (H - λ)2 where λ does NOT sit exactly on an 
energy level calculated by ED in advance. 
 
λ1 = E1 + 0.1 (E2-E1),  λ2 = E1 + 0.2 (E2-E1),  λ3 = E1 + 0.3 (E2-E1) 
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Difficulty of using (H - λ)2 as MPO 
Sweeping with (H - λ)2 where λ sits not exactly on an energy 
level calculated by ED in advance. 
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