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Higher Accuracy!

'We have fixed computational resources. Our goaf
is fo get electronic structure to higher accuracy.

I. Faster 'exact’ methods
Improved QMC plagued by sign problems

Collaborators: Kolodrubetz

II. Better approximations g

Better molecules with better wave-functions

Collaborators: Morales, McMinis, Kim, Scuseria
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f |. Faster ‘exact’ methods

For a gjven number of Particles (and basis) we’d like the
ftrue answer. The fermion sign Problem means this will

]fgenerical y be slow. We still can ask:

How do we most eﬁqcientlg accomPlish this?

SEocict cliagonalization?
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A snapshot of a QMC simulation

gives a wave-function.
Run 1
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The promise of QMC is if you run it many times, the sum
over your wave-functions will converge to the ground state

True ground state

-

(1 - 7H)"®™|0)

Run 1 (after 1000 steps) Run 2 (after 1000 steps)

-

Note: This always works. A sign problem means
you need exponentially many runs.



'‘Exact’ QMC

Analytically & Stochastically




QMC w/ Annihilation

Sometimes a snapshot of the QMC wave-function during
your run looks like the left. This is silly. You should remove
walkers so you get the equivalent histfogram at the right.

FCIQMC g )

Can we do any better?

Fermion Monte Carlo
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Exact QMC w/ Annihilation

+

Sometimes a snapshot of the has a

¢ o histagraomidike i kapeddt of the QMC wave-fur
your run looks like the left.

This is silly. Should remove walkers so

the histogram looks like the right.
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FCIQMC
Fermion Monte Carlo



Fermi-POldrOn' The “"hydrogen atom” of

strongly correlated systems.
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Works: N=33, M=1, A=10,a ' =0
Fails: N=33, M=2, A=10.a"' =0
Fails: N=33, M<l, A=10.a-!>¢0 Why hard:
@ All determinants

. \ important

Sign problem foo hard! @ Random Signs




Partial Node FCIQMC

Not the answer. Better sign problem.

i The answer. Sign problem too severe!
* —°
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Restore the variational upper bound.
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(R|(1=7H)|R") —— (R|(1-TH)|R)

Ur(R)
Ur(R')

Extrapolate to the right answer.

/

Equivalent fo removing QMC walkers
which step on the wrong signed
determinant



Does this actually work?
1

Schrodinger Egn: (Djvg) = -—— (DIV|D")(D'[Wo)
Islsag (DI} — B
OO e OO e O e PH pair depends on 1 and 3 PH pair
o) 1 2 3 4
Particle-hole pairs Only use smaller PH pairs for your trial w.f

o\

Extrapolating fo the
tfrue answer works!

- J

« Partial node

* Quadratic fit




Partial Node: Is it useful?

Sign problem exponential in betfa

I —————————

Beta required for
exp|—BH|[¥r) = Vo)

* No imp. samp. |_
~— Partial node
-- Inv. corr. time |
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A better extrapolation?

If |Up) is correct, then you should
sz restart the simulation here.

| Slmulatlon

If |Wp) is slightly wrong, then
restarting the simulation is still small error.

Almost no bias. Almost no help for the sign
'Wr)  problem.

Remove when > v:) goes fo O
S " |w;) (approximate by sign change)

Small discretization bias;
|U7)  small sign problem

Remove when (Ur|w;) goes to O
(approximate by sign change)

|w;) Large discretization bias. No sign problem.'

| Reduces to removing the bad signs.
| ) O i




Restore the variational upper bound.

—\ —

1_7_His:

Partial node:

set to O

Fixed node:

set to O

and dump to diagonal.

£

Hard in momentum basis: 10° "bad” terms per row

Udiag | D] = 1 <t (DT SRR/ K

AK = Z (D'|H;s| D)

D’ ebad

Stochastic Diagonal Dumping

@ Pick D’ according to P(D’|D)
@let AK = (D'|H;,|D)/P(D'|D)if (D'|H;s|D)is bad

Formally correct, but 'bad’ if Udiag < —1



Restore the variational upper bound.
by adding a time step error.

1 — 7(D|H;,| DY — TAK s TR ISaEE )
Variational Upper Bound!

« FCI-QOMC with f.n.
« Extrapolated
Variational ansatz




/The answer. Sign problem too severe!

Start Here!

Not the answer. Better sign problem.

The answer. Sign problem too severe!

Restore the variational upper bound.




Release Node
Better trial functions = smaller beta needed

Use implicit trial function!

'@ Start: partial node walkers
@Propaqate each for
@ Measure [

« Partial node

= Release node
51 = Quadratic fit




For condensed systems: oo basis, oo ptcl number

Why is this
extrapolation so bad?
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This is because N=33
and not infinite N.
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How do we get to the
thermodynamic limit?




An infinite number of bits is hard :(

Represent:
F'S)
E'S) —|gi) +
B )eiq; e

k; €

q;) + ki) + |kj)

List holes, list excitations. M = 2

2 concerns

@ Sign problem
@ Annihilation only on DO .
@ (1 — 7H) need spectra bounded il

QMC in the thermodynamic limit!

@ “Continuous Time" possible I P —

« + Extrzpolated

o Finite M gives this.






@ fast to evaluate

@ captures physics

@ improvable

Multislater-Jastrow: W(R)=e 7 " ay det M,

Jastrow makes each determinant more powerful then quantum chemistry. [

We've developed a fast algorithm to evaluate!

2
O(Tl = 17 oSl ne) TV . number of particles

TLs . number of single excitations

TLe . number of excitations

A good wave-function is ..



Frozen core

14 e M~ ' (ds — ¢3).
Lots of redundancy!
2. Read off ratios

Myt 5| M3 - b5 M - 65
M3y - ge| My ' - ¢ My " - ¢
M2_1.¢7 M§1.¢7 M4—1.¢7
M3 - pg| Mgt - g [ML - ¢




FCI

How well does Multi-

Slater Jastrow do? >
CCSD(T) R

ol CCSD(T

—7.639¢1 Iy
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1ID- ONd - DINA
+dfs- DINA
IDPBMN- DINA

Best QMC by far

1PBMIN- DINA
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Total: 76.4 Hartree
Difference: 0.001 Hartree

* M. Casula, C. Attaccalite, and S. Sorella, The Journal of chemical physics 121, 7110 (2004).

+ |. G. Gurtubay and N. R. J., The Journal of chemical physics 127, 124306 (2007).
II'A. Luchow and R. F. Fink, The Journal of chemical physics 113, 8457 (2000).
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Conclusions

Q: How do we get to accurate electronic structure?

A:
Better Wave-functions

Accurate

Electronic Structure
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Systematically approach
the exact answer.




