High Accuracy Electronic Structure

Bryan Clark
Princeton Center for Theoretical Science (PCTS)

ES12: Wake Forest University

Higher Accuracy!

We have fixed computational resources. Our goal is to get electronic structure to higher accuracy.
I. Faster 'exact' methods

Improved QMC plagued by sign problems
Collaborators: Kolodrubetz

II. Better approximations Better molecules with better wave-functions

Collaborators: Morales, McMinis, Kim, Scuseria

1. Faster 'exact' methods

For a given number of particles (and basis) we'd like the true answer. The fermion sign problem means this will generically be slow. We still can ask:

How do we most efficiently accomplish this?

> *Exact diagonalization? *Quantum Chemistry?
> *QMC?
> * (Improved QMC)?

Wave-function Ψ

The promise of QMC is if you run it many times, the sum over your wave-functions will converge to the ground state

True ground state

$$
(1-\tau H)^{1000}|0\rangle
$$

Run 1 (after 1000 steps) Run 2 (after 1000 steps)

Note: This always works. A sign problem means you need exponentially many runs.
'Exact' QMC

$$
\begin{aligned}
& (1-\tau H) \Psi_{T} \\
& (1-\tau H)(1-\tau H) \Psi_{T}
\end{aligned}
$$

QMC w/ Annihilation

Sometimes a snapshot of the QMC wave-function during your run looks like the left. This is silly. You should remove walkers so you get the equivalent histogram at the right.
FCIQMC
Fermion Monte Carlo
Can we do any better?

Exact QMC w/ Annihilation

Run 3

Sometimes a snapshot of the has a histogarfmin like athnapsiftt of the QMC wave-fur your run looks like the left.
This is silly. Should remove walkers so the histogram looks like the right.

FCIQMC
Fermion Monte Carlo

Fermi-Polaron: The "hydrogen atom" of strongly correlated systems.

$$
H=\sum_{k \sigma} \epsilon_{k} c_{k \sigma}^{\dagger} c_{k \sigma}+\frac{g}{V} \sum_{k p q} c_{k+q, \uparrow}^{\dagger} c_{p-q, \downarrow}^{\dagger} c_{p, \downarrow} c_{k, \uparrow}
$$

$$
g^{-1}=\frac{1}{8 \pi @}-\frac{\Lambda}{4 \pi^{2}}
$$

Want:
$\Lambda \rightarrow \infty$
$N \rightarrow \infty$
$M \rightarrow \infty$

Particle-hole pairs: $\left|D_{0}\right\rangle \equiv\left|\mathrm{FS}_{\uparrow}, 0_{\downarrow}\right\rangle$

FCI-QMC:

Works: $\mathrm{N}=33, \mathrm{M}=1, \Lambda=10, a^{-1}=0$
Fails: $\mathrm{N}=33, \mathrm{M}=2, \quad \Lambda=10, a^{-1}=0$
Fails: $\mathrm{N}=33, \mathrm{M}=1, \quad \Lambda=10, a^{-1}>0$
Why hard:

- All determinants important
Sign problem too hard!

Partial Node FCIQMC

Restore the variational upper bound.

$$
\langle R|(1-\tau H)\left|R^{\prime}\right\rangle \longrightarrow\langle R|(1-\tau H)\left|R^{\prime}\right\rangle \frac{\Psi_{T}(R)}{\Psi_{T}\left(R^{\prime}\right)}
$$

Extrapolate to the right answer.

Equivalent to removing QMC walkers which step on the wrong signed determinant

Does this actually work?

Schrodinger Eqn: $\left\langle D \mid \Psi_{0}\right\rangle=-\frac{1}{\langle D| \hat{T}|D\rangle-E_{0}} \sum_{D^{\prime}}\langle D| V\left|D^{\prime}\right\rangle\left\langle D^{\prime} \mid \Psi_{0}\right\rangle$

Extrapolating to the true answer works!

Partial Node: Is it useful?

Sign problem exponential in beta

A better extrapolation?

If $\left|\Psi_{T}\right\rangle$ is correct, then you should
$\left|\Psi_{\text {simulation }}\right\rangle=\sum_{w} w_{i}$
If $\left|\Psi_{T}\right\rangle$ is slightly wrong, then restarting the simulation is still small error.

Almost no bias. Almost no help for the sign $\left|\Psi_{T}\right\rangle \quad$ problem.

Remove when $\sum\left|w_{i}\right\rangle$ goes to 0

$\sum_{i}\left|w_{i}\right\rangle \quad$ (approximate by sign change)
Small discretization bias;
$\left|\Psi_{T}\right\rangle$ small sign problem

Remove when $\left\langle\Psi_{T} \mid w_{i}\right\rangle$ goes to 0 (approximate by sign change)
$\left|w_{i}\right\rangle \quad$ Large discretization bias. No sign problem.
Reduces to removing the bad signs.
$\left|\Psi_{T}\right\rangle$

Restore the variational upper bound.

$1-\tau H_{i s}=\left(\begin{array}{c}\square \square \square \square \\ \square \square \square \square \\ \square \square \square \square \\ \square \square \square\end{array}\right)$ Fixed node: \square set to 0

Hard in momentum basis: 10^{6} "bad" terms per row

$$
U_{\text {diag }}[D]=1-\tau\langle D| H_{i s}|D\rangle-\tau \Delta K \quad \Delta K=\sum_{D^{\prime} \in \text { bad }}\left\langle D^{\prime}\right| H_{i s}|D\rangle
$$

Stochastic Diagonal Dumping

- Pick D^{\prime} according to $P\left(D^{\prime} \mid D\right)$
-Let $\Delta K=\left\langle D^{\prime}\right| H_{i s}|D\rangle / P\left(D^{\prime} \mid D\right)$ if $\left\langle D^{\prime}\right| H_{i s}|D\rangle$ is bad
Formally correct, but 'bad' if $U_{\text {diag }} \ll-1$

Restore the variational upper bound. by adding a time step error.

Variational Upper Bound!

The story so far ...
Approach the exact answer either
variationally (or not)

Next: Get to the right answer by starting close.

Release Node

Better trial functions = smaller beta needed Use implicit trial function!

- Start: partial node walkers
- Propaqate each for
- Measure β

For condensed systems: ∞ basis, ∞ ptcl number

$\Lambda \rightarrow \infty$
This is because $\mathrm{N}=33$ and not infinite N .

How do we get to the thermodynamic limit?

Why is this extrapolation so bad?

An infinite number of bits is hard :(Represent:

$$
\begin{aligned}
& |F S\rangle \\
& |F S\rangle-\left|q_{i}\right\rangle+\left|k_{i}\right\rangle \\
& |F S\rangle-\left|q_{i}\right\rangle-\left|q_{j}\right\rangle+\left|k_{i}\right\rangle+\left|k_{j}\right\rangle
\end{aligned}
$$

List holes, list excitations. $M=2$

QMC in the thermodynamic limit!

2 concerns

- Sign problem
- Annihilation only on DO
- $(1-\tau H)$ need spectra bounded - "Continuous Time" possible - Finite M gives this.

II. Better Approxímations

Many wave-functions
Slater-Jastrow
Correlated-Product States AGP
Backflow
Valence Bond

A good wave-function is ...

- fast to evaluate
- captures physics
- improvable

We've developed a fast algorithm to evaluate!
$O\left(n^{2}+n_{s} n+n_{e}\right) \quad n$: number of particles
n_{s} : number of single excitations
n_{e} : number of excitations
$\begin{aligned} M_{0} & =\left(\begin{array}{l}\phi_{1}\left(r_{i}\right) \\ \phi_{2}\left(r_{i}\right) \\ \phi_{3}\left(r_{i}\right) \\ \phi_{4}\left(r_{i}\right)\end{array}\right)^{\text {Frozen core }} \\ & \begin{array}{l}\phi_{5}\left(r_{i}\right) \\ \phi_{6}\left(r_{i}\right) \\ \phi_{7}\left(r_{i}\right) \\ \phi_{8}\left(r_{i}\right)\end{array} \mathrm{m}_{\mathrm{m}}\end{aligned}$

Ratios

$\left[1+e_{k}^{T} M^{-1}\left(\phi_{5}-\phi_{4}\right)\right]$
$\left[1+e_{k}^{T} M^{-1}\left(\phi_{6}-\phi_{4}\right)\right]$
$\left[1+e_{k}^{T} M^{-1}\left(\phi_{7}-\phi_{5}\right)\right]$
$\left[1+e_{k}^{T} M^{-1}\left(\phi_{3}-\phi_{8}\right)\right]$
$\left[1+e_{k}^{T} M^{-1}\left(\phi_{4}-\phi_{8}\right)\right]$
Lots of redundancy!
2. Read off ratios

$M_{2}^{-1} \cdot \phi_{5}$	$M_{3}^{-1} \cdot \phi_{5}$	$M_{4}^{-1} \cdot \phi_{5}$
$M_{2}^{-1} \cdot \phi_{6}$	$M_{3}^{-1} \cdot \phi_{6}$	$M_{4}^{-1} \cdot \phi_{6}$
$M_{2}^{-1} \cdot \phi_{7}$	$M_{3}^{-1} \cdot \phi_{7}$	$M_{4}^{-1} \cdot \phi_{7}$
$M_{2}^{-1} \cdot \phi_{8}$	$M_{3}^{-1} \cdot \phi_{8}$	$M_{4}^{-1} \cdot \phi_{8}$

How well does MultiSlater Jastrow do?

Jacob's Ladder:

DFT Heaven of Chemicat

Accuracy Quantum Chemistry Version

Best QMC by far

- Systematic, albeit with slow convergence.

Conclusions

Q: How do we get to accurate electronic structure?
A:
Better Wave-functions

Systematically approach the exact answer.

