

The Speed of Light *c* in vacuum is the same for all inertial observers, independent of the motion of the source.

$$\beta \equiv \frac{v}{c} \qquad \gamma \equiv \frac{1}{\sqrt{1 - \beta^2}}$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion <1-
- Loss of Simultaneity
- Lattice of Rods & Clocks: synchronize clocks on grid of rigid rulers → how to think about time @ distant location

Lorentz Boosts and 4-Vectors

Dynamics

Week 7 = Final

1 Basic SR Effects from LT

- 1. Time dilation of moving clock: $\Delta x' = 0 \rightarrow \Delta t = \gamma \Delta t'$
- 2.Length meas of moving object: $\Delta t = 0 \rightarrow \Delta x = \Delta x' / \gamma$
- 3. Simultaneous events in S': $\Delta t' = 0 \rightarrow \Delta t = \gamma \beta \Delta x'$

2 Derivation of LT

- LT must be **linear**, as straight lines (constant v) map onto straight lines to preserve relativity
- 2. Inverse $S \leftrightarrow S'$ equivalent to $t \leftrightarrow -t$ \therefore (1) x'=ax+bt and (2) x=ax'-bt'

3. Relative speed of S,S' is v

 $\therefore x'=0$ maps onto x=vt

- $\therefore (1) x' = 0 = a(vt) + bt \rightarrow b = -av$
- 4. Light ray x=ct maps onto x'=ct': (1) x'=ct'=a(x-vt)=a(c-v)t and (2) x = ct = a(x'+vt')=a(c+v)t' $\therefore t'/t = < algebra> \rightarrow a = \gamma$

3 Argument for Speed Limit *c*

- Hypothesis: X travels FTL from A to B
 ∴ Emission at A *causes* detecⁿ at B
- $FTL \rightarrow I_{A-B}$ is spacelike (negative)
 - : Can change frames so that $t_B < t_A$
 - \therefore A *cannot* have caused B

4 Derive velocity additⁿ

Boost space-time interval $\Delta x'^{\mu} = (cT', u_x'T', u_y'T', u_z'T')$ betw two points on trajectory of particle moving with speed u' \rightarrow get Δx^{μ} and so (u_x, u_y, u_z)

Alternate: boost η^{μ} ; get rid of unknown γ_{μ} in result using η'^{0}

5 Derive Doppler shift

Calculate intersection of two wave crests with path of moving observer S'; boost to S' frame to get $\Delta t'=1/f$

Easier: boost p^{μ} of photon, use E=hf \rightarrow get general case $f'=f\gamma(1-\beta\cos\theta)$

6 Derive relativ. mech.

Motivation:

- Incorporate $v \le c$ speed limit
- Incorporate photon, with *E=pc*

Photon-in-a-box thought expt: preserve principle of inertia by assigning photon mass $m=E/c^2$

Hypotheses for normal particles:

- inertial mass in p=mv grows w v
- total energy $E=mc^2$ as for photon
- keep F = dp/dt and W = $\int F \cdot dl$

 \rightarrow derive new energy-momentum relation $E^2 = (pc)^2 + (m_0c^2)^2$ where m_0 is **rest mass** of particle

 \rightarrow find $m_0=0$ for photon and inertial mass $m=\gamma m_0$ for massive particles