Principle of Relativity: The laws of physics are the same in all inertial frames.

The Speed of Light \boldsymbol{c} in vacuum is the same for all inertial observers, independent of the motion of the source.

$$
\beta \equiv \frac{v}{c} \quad \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$$

- Time Dilation: moving clocks tick slower by factor γ
- Length Contraction: moving objects are shorter by factor γ along direction of motion
- Loss of Simultaneity
- Lattice of Rods \& Clocks: synchronize clocks on grid of rigid rulers \rightarrow how to think about time @ distant location

Week 7 = Final

Invariant
 Interval

Lorentz Boosts and 4-Vectors

- $a^{\mu} \cdot b^{\mu} \equiv a^{0} b^{0}-a^{1} b^{1}-a^{2} b^{2}-a^{3} b^{3}$ is frame invariant

Dynamics

$$
\vec{F}=\frac{d \vec{p}}{d t} \quad W=\int \vec{F} \cdot d \vec{l}=\Delta E
$$

$$
m_{\text {inert }}=\gamma m_{0} \quad \vec{p}=m_{\text {inert }} \vec{v} \quad E=m_{\text {inert }} c^{2}
$$

$6 \downarrow$

$$
E=\sqrt{(p c)^{2}+\left(m_{0} c^{2}\right)^{2}}
$$

$$
\vec{p}=\gamma m_{0} \vec{v} \quad E=\gamma m_{0} c^{2} \quad \beta=\frac{p c}{E}
$$

$K E \equiv E-m_{0} c^{2} \quad$ E,p conserved

- (Rest) mass not conserved, can be converted \leftrightarrow energy
- Photon: $m_{0}=0, E=h f$, equ's with γ factors useless

$$
\begin{aligned}
& \Lambda \equiv\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \text { Boost velocity: } \\
& u_{x}=\frac{u_{x}^{\prime}+v}{1+u_{x}^{\prime} v / c^{2}} \\
& u_{y, z}=\frac{u_{y, z}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)}
\end{aligned}
$$

$$
\begin{gathered}
\Delta x^{\mu} \equiv(c \Delta t, \Delta x, \Delta y, \Delta z) \\
\eta^{\mu} \equiv \frac{d x^{\mu}}{d \tau}=\gamma_{u}\left(c, u_{x}, u_{y}, u_{z}\right) \\
p^{\mu} \equiv m_{0} \eta^{\mu}=\left(\frac{E}{c}, p_{x}, p_{y}, p_{z}\right)
\end{gathered}
$$

$$
\text { where } \quad d \tau=\frac{d t}{\gamma_{u}} \quad \gamma_{u}=\frac{1}{\sqrt{1-u^{2} / c^{2}}}
$$

Causality: Causal relationships exist

- Boost frequency
of light ray

Nothing - even information -
(parallel case)

$$
\frac{f^{\prime}}{f}=\sqrt{\frac{1-\beta}{1+\beta}}
$$ can travel faster than c.

$$
I=(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}
$$

is invariant under boosts

Timelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}>0$

- object can travel from A-B
- boost can change Δx_{AB} sign

Spacelike $\mathrm{I}_{\mathrm{A}-\mathrm{B}}<0$

- cannot travel from A-B
- boost can change Δt_{AB} sign

The proper time interval $\Delta \tau_{\mathrm{AB}} \equiv \sqrt{ } I_{\mathrm{AB}} / c$ is the "watch-time" that elapses on the wristwatch of an inertial observer who travels from A to B.

Minkowski Diagrams

- worldline: path of an object in $(c t, x)$ diagram
- boost hyperbola: locus of coordinates $(t, x)_{\mathrm{B}}$ in all possible inertial frames relative to $(t, x)_{\mathrm{A}}$ at $(0,0)$; defined by $I=(c \Delta t)^{2}-(\Delta x)^{2}$
- tilted axes: $c t^{\prime}$ and x^{\prime} axes plotted in S-frame are tilted and stretched rel to $c t, x$ axes

1 Basic SR Effects from LT

1.Time dilation of moving clock:

$$
\Delta x^{\prime}=0 \rightarrow \Delta t=\gamma \Delta t^{\prime}
$$

2.Length meas of moving object:

$$
\Delta t=0 \rightarrow \Delta x=\Delta x^{\prime} / \gamma
$$

3.Simultaneous events in S^{\prime} :

$$
\Delta t^{\prime}=0 \rightarrow \Delta t=\gamma \beta \Delta x^{\prime}
$$

2 Derivation of LT

1. LT must be linear, as straight lines (constant v) map onto straight lines to preserve relativity
2. Inverse $\mathrm{S} \leftrightarrow \mathrm{S}^{\prime}$ equivalent to $t \leftrightarrow-t$ \therefore (1) $x^{\prime}=a x+b t$ and (2) $x=a x^{\prime}-b t^{\prime}$
3. Relative speed of S, S^{\prime} is v
$\therefore x^{\prime}=0$ maps onto $x=v t$
$\therefore(1) x^{\prime}=0=a(v t)+b t \rightarrow b=-a v$
4. Light ray $x=c t$ maps onto $x^{\prime}=c t^{\prime}$:
(1) $x^{\prime}=c t^{\prime}=a(x-v t)=a(c-v) t$ and
(2) $x=c t=a\left(x^{\prime}+v t^{\prime}\right)=a(c+v) t^{\prime}$
$\therefore t^{\prime} / t=<$ algebra $>\rightarrow a=\gamma$

3 Argument for Speed Limit c

- Hypothesis: X travels FTL from A to B
\therefore Emission at A causes detec ${ }^{\mathrm{n}}$ at B
- $\mathrm{FTL} \rightarrow \mathrm{I}_{\mathrm{A}-\mathrm{B}}$ is spacelike (negative)
\therefore Can change frames so that $\mathrm{t}_{\mathrm{B}}<\mathrm{t}_{\mathrm{A}}$
\therefore A cannot have caused B

4 Derive velocity additn

Boost space-time interval

$$
\Delta x^{\prime \mu}=\left(c T^{\prime}, u_{x}^{\prime} T^{\prime}, u_{y}^{\prime} T^{\prime}, u_{z}^{\prime} T^{\prime}\right)
$$

betw two points on trajectory of particle moving with speed u^{\prime} \rightarrow get Δx^{μ} and so (u_{x}, u_{y}, u_{z})

Alternate: boost η^{μ}; get rid of unknown γ_{u} in result using $\eta^{\prime 0}$

5 Derive Doppler shift

Calculate intersection of two wave crests with path of moving observer S^{\prime}; boost to S^{\prime} frame to get $\Delta t^{\prime}=1 / f$

Easier: boost p^{μ} of photon, use $E=h f$
\rightarrow get general case $f^{\prime}=f \gamma(1-\beta \cos \theta)$

6 Derive relativ. mech.

Motivation:

- Incorporate $v \leq c$ speed limit
- Incorporate photon, with $E=p c$

Photon-in-a-box thought expt: preserve principle of inertia by assigning photon mass $m=E / c^{2}$

Hypotheses for normal particles:

- inertial mass in $p=m v$ grows $\mathrm{w} v$
- total energy $E=m c^{2}$ as for photon
- keep $F=d p / d t$ and $\mathrm{W}=\int F \cdot d l$
\rightarrow derive new energy-momentum relation $E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2}$ where m_{0} is rest mass of particle
\rightarrow find $m_{0}=0$ for p hoton and inertial mass $m=\gamma m_{0}$ for massive particles

Week 7 = Final

