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1) Counting indices: Show that in d dimensions:

i) the dimension of the space of skew-symmetric covariant tensors with p indices is

d!/!p(d− p)!;

ii) the dimension of the space of symmetric covariant tensors with p indices is

(d+ p− 1)!/p!(d− 1)!.

2) Quantum Entanglement: Two quantum mechanical systems have Hilbert spaces H(1)

with basis e
(1)
1 , . . . , e

(1)
m and H(2) with basis e

(2)
1 , . . . , e

(2)
n . The Hilbert space for the combined

system is then H(1)⊗H(2) with basis e
(1)
i ⊗e

(2)
j , so the quantum state of the combined system

is described by a state

a = aije
(1)
i ⊗ e

(2)
j ∈ H(1) ⊗H(2).

If we can find vectors

x = xie
(1)
i ∈ H(1)

y = yje
(2)
j ∈ H(2)

such that

a = x⊗ y = xiyje
(1)
i ⊗ e

(2)
j

then the tensor a is said to be decomposable and the two quantum systems are said to be

unentangled . If there are no such vectors the two systems are entangled in the sense of the

Einstein-Podolski-Rosen (EPR) paradox.

i) By counting the number of components that are at our disposal a and in x⊗y find out

how many relations the coefficients aij must satisfy if the state is to be decomposable.

ii) If the state is decomposable, show that

0 =

∣

∣

∣

∣

aij ail

akj akl

∣

∣

∣

∣

for all sets of indices i, j, k, l.

iii) Using your result from part i) as a reality check, find a subset of the relations from

part ii), that constitute a necessary and sufficient set of conditions for the state a to

be decomposable. Include a proof that your set is indeed sufficient.

Since quantum states are really in one-to-one correspondence with rays in the Hilbert

space, rather than vectors, the set of decomposable states should be thought of as a subset of

the complex projective spaceCPnm−1, and since it is defined by a finite number of polynomial

equations it forms what algebraic geometers call a variety . This particular subset is known

as the Segre variety .
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3) Symmetric integration: Show that the n-dimensional integral

Iαβγδ =

∫

dnk

(2π)n
(kαkβkγkδ) f(k

2),

is equal to

A(δαβδγδ + δαγδβδ + δαδδβγ)

where

A =
1

n(n+ 2)

∫

dnk

(2π)n
(k2)2f(k2).

Similarly evaluate

Iαβγδǫ =

∫

dnk

(2π)n
(kαkβkγkδkǫ) f(k

2).

4) Leonardo da Vinci’s problem II: A steel beam is forged so that its cross section has

the shape of a region Γ ∈ R2. The centroid, O, of each cross section is defined so that

∫

Γ

x dxdy =

∫

Γ

y dxdy = 0,

where the co-ordinates x, y are defined with the centroid O as the origin. The beam is

slightly bent in the y − z plane so that near a particular cross-section the line of centroids

has radius of curvature R. (In the figure this cross section is depicted at the end of the

beam. It is actually an interior slice)

Γ
z

x

y

O

Bent beam.

Assume that near O the deformation is such that

ηx = −
σ

R
xy

ηy =
1

2R

{

σ(x2 − y2)− z2
}

ηz =
1

R
yz
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O

Γ

x

y

The deformed cross-section (greatly exagerated).

Verify that this distortion field does correpond to the beam being bent downwards, and with

the line of centroids having radius of curvature R. Notice how, for positive Poisson ratio,

the cross section is deformed anticlastically — the sides bend up as the beam bends down.

Show that

exx = −
σ

R
y, eyy = −

σ

R
y, ezz =

1

R
y.

Since steel is isotropic, the stresses are derived from the strains via the Lamé constants.

Show that σzz = Y y/R, where Y is Young’s modulus, and that all other components of the

stress tensor vanish. Deduce from this that the assumed deformation satisfies the force-free

surface boundary condition, and so is indeed the way the beam deforms. The total elastic

energy is given by

E =

∫∫∫

beam

1

2
eijcijklekl d

3x.

Show that for our bent beam, this reduces to

E =

∫

Y I

2

(

1

R2

)

ds ≈

∫

Y I

2
(y′′)2dz.

Here s is the arc-length taken along the line of centroids of the beam,

I =

∫

Γ

y2 dxdy

is the moment of inertia of the region Γ about an axis through the centroid, and perpendicular

both to the length of the beam and the plane into which it is bent. The right-hand-side

formula is the expression used many times in 508. Here y denotes the deflection of the beam

away from the z axis, and the primes denote differentiation with respect to z or s.

5) Maxwell Stress: Let

Πij = ǫ0

(

EiEj −
1

2
δij |E|2

)

+ µ0

(

HiHj −
1

2
δij |H|2

)

.

Show that Maxwell’s equations lead to

(ρE+ j×B)i +
∂

∂t

{

1

c2
(E×H)i

}

= ∂jΠji.
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