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1) Buckyball spectrum.: Consider the symmetry group of the C60 buckyball molecule

illustrated on page 194 of the notes.

a) Starting from the character table of the orientation-preserving icosohedral group Y

(table 5.3), and using the fact that the Z2 parity inversion σ : r → −r combines with

g ∈ Y so that DJg(σg) = DJg(g), whilst DJu(σg) = −DJu(g), write down the character

table of the extended group Yh = Y ×Z2 that acts as a symmetry on the C60 molecule.

There are now ten conjugacy classes, and the ten representations will be labelled Ag,

Au, etc. Verify that your character table has the expected row-orthogonality properties.

b) By counting the number of atoms left fixed by each group operation, compute the

compound character of the action of Yh on the C60 molecule. (Hint: Examine the

pattern of panels on a regulation soccer ball, and deduce that four carbon atoms are

left unmoved by operations in the class σC2.)

c) Use your compound character from part b), to show that the 60-dimensional Hillbert

space decomposes as

HC60
= Ag ⊕ T1g ⊕ 2T1u ⊕ T2g ⊕ 2T2u ⊕ 2Gg ⊕ 2Gu ⊕ 3Hg ⊕ 2Hu,

consistent with the energy-levels sketched in figure 5.3.

2) Matrix commutators:

a) Let λ̂1 and λ̂2 be hermitian matrices. Show that if we define λ̂3 by the relation [λ̂1, λ̂2] =

iλ̂3, then λ̂3 is also a hermitian matrix.

b) For the Lie group O(n), the matrices “iλ̂” are real n-by-n skew symmetric matrices.

Show that if A1 and A2 are real skew symmetric matrices, then so is [A1, A2].

c) For the Lie group Sp(2n,R), the iλ̂ matrices are of the form

A =

(

a b
c −aT

)

where a is a real n-by-n matrix and b and c are symmetric (aT = a and bT = b) real

n-by-n matrices. Show that the commutator of any two matrices of this form is also

of this form.

3 Euler angles and SU(2): Parametrize the elements of SU(2) as

U = exp{−iφσ̂3/2} exp{−iθσ̂2/2} exp{−iψσ̂3/2},

=

(

e−iφ/2 0
0 eiφ/2

)(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(

e−iψ/2 0
0 eiψ/2

)

,

=

(

e−i(φ+ψ)/2 cos θ/2 −ei(ψ−φ)/2 sin θ/2
ei(φ−ψ)/2 sin θ/2 e+i(ψ+φ)/2 cos θ/2

)

.
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a) Show that Hopf : S3 → S2 is the projection of S3 ≃ SU(2) onto the coset space

S2 ≃ SU(2)/U(1), where U(1) is the subgroup {exp(−iψσ̂3/2)}.. Concude that Hopf

takes (θ, φ, ψ) → (θ, φ), where θ and φ are spherical polar co-ordinates on the two-

sphere.

b) Show that

U−1dU = −
i

2
σ̂iΩ

i
L,

where

Ω1
L = sinψ dθ − sin θ cosψ dφ,

Ω2
L = cosψ dθ + sin θ sinψ dφ,

Ω3
L = dψ + cos θ dφ.

Compare these 1-forms with the components

ωX = sinψ θ̇ − sin θ cosψ φ̇,

ωY = cosψ θ̇ − sin θ sinψ φ̇,

ωZ = ψ̇ + cos θ φ̇.

of the angular velocity ω of a body with respect to the body-fixed XY Z.

c) (Optional) Now show that

dUU−1 = −
i

2
σ̂iΩ

i
R,

where

Ω1
R = − sinφ dθ + sin θ cosψ dψ,

Ω2
R = cosφ dθ + sin θ sinψ dψ,

Ω3
R = dφ+ cos θ dψ,

Compare these 1-forms with components ωx, ωy, ωz of the same angular velocity vector

ω, but now with respect to the space-fixed xyz frame.

4) Class and group volume:

a) In the lecture notes I claimed that the volume fraction of the group SU(2) occupied by

rotations through angles lying between θ and θ + dθ is sin2(θ/2)dθ/π. By considering

the geometry of the three-sphere, show that this is correct.

b) Show that
∫

SU(2)

tr [(U−1dU)3] = 24π2.
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c) Suppose we have a map g : R3 → SU(2) such that g(x) goes to the identity element at

infinity. Consider the integral

S[g] =
1

24π2

∫

R3

tr [(g−1dg)3],

where the 3-form tr (g−1dg)3 is the pull-back to R
3 of the form tr [(U−1dU)3] on SU(2).

Show that if we vary g → g + δg, then

δS[g] =
1

24π2

∫

R3

d
{

3 tr [(g−1δg)(g−1dg)2]
}

= 0,

and so S[g] is topological invariant of the map g. Conclude that the functional S[g]

is an integer, that integer being the Brouwer degree, or winding number, of the map

g : S3 → S3.

5) Campbell-Baker-Hausdorff Formulae: Here are some useful formula for working

with exponentials of matrices that do not commute with each other.

a) Let X and X be matrices. Show that

etXY e−tX = Y + t[X, Y ] +
1

2
t2[X, [X, Y ]] + · · · ,

the terms on the right being the series expansion of exp[ad(tX)]Y . A proof is sketched

in a footnote in the lecture notes, but I want you to fill in the details.

b) Let X and δX be matrices. Show that

e−XeX+δX = 1 +

∫ 1

0

e−tXδXetXdt+O
[

(δX)2
]

= 1 + δX −
1

2
[X, δX ] +

1

3!
[X, [X, δX ]] + · · ·

= 1 +

(

1− e−ad(X)

ad(X)

)

δX +O
[

(δX)2
]

c) By expanding out the exponentials, show that

eXeY = eX+Y+ 1

2
[X,Y ]+higher,

where “higher” means terms higher order in X, Y . The next two terms are, in fact,
1
12
[X, [X, Y ]] + 1

12
[Y, [Y,X ]].

6) SU(3): Here are some simple results that come from playing with the Gell-Mann lambda

matrices, as well as practice at decomposing tensor products.

The totally antisymmetric structure constants, fijk, and a set of totally symmetric con-

stants dijk are defined by

fijk =
1

2
tr (λi[λj , λk]), dijk =

1

2
tr (λi{λj, λk}).
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Let D8
ij(g) be the matrices representing SU(3) in “8” — the eight-dimensional adjoint rep-

resentation.

a) Show that

fijk = D8
il(g)D

8
jm(g)D

8
kn(g)flmn,

dijk = D8
il(g)D

8
jm(g)D

8
kn(g)dlmn,

(1)

and so fijk and dijk are invariant tensors in the same sense that δij and ǫi1...in are

invariant tensors for SO(n).

b) Let wi = fijkujvk. Show that if ui → D8
ij(g)uj and vi → D8

ij(g)vj, then wi → D8
ij(g)wj.

Similarly for wi = dijkujvk. (Hint: show first that the D8 matrices are real and

orthogonal.) Deduce that fijk and dijk are Clebsh-Gordan coefficients for the 8 ⊕ 8

part of the decomposition

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

a) Similarly show that δαβ and the lambda matrices (λi)αβ can be regarded as Clebsch-

Gordan coefficients for the decomposition

3⊗ 3̄ = 1⊕ 8.

d) Use the graphical method, introduced in class, of plotting weights and pealing off irreps

to obtain the tensor product decomposition in part b).
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