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1) Buckyball spectrum.: Consider the symmetry group of the Cgy buckyball molecule
illustrated on page 194 of the notes.

a) Starting from the character table of the orientation-preserving icosohedral group Y
(table 5.3), and using the fact that the Z, parity inversion o : r — —r combines with
g € Y so that D7¢(og) = D”s(g), whilst D7*(5g) = —D7(g), write down the character
table of the extended group Y, =Y X Zs that acts as a symmetry on the Cgy molecule.
There are now ten conjugacy classes, and the ten representations will be labelled A,,
Ay, ete. Verify that your character table has the expected row-orthogonality properties.

b) By counting the number of atoms left fixed by each group operation, compute the
compound character of the action of Y, on the Cg molecule. (Hint: Examine the
pattern of panels on a regulation soccer ball, and deduce that four carbon atoms are
left unmoved by operations in the class 0C5.)

¢) Use your compound character from part b), to show that the 60-dimensional Hillbert
space decomposes as

Hegy = Ay @ Thg & 2T, & Toy & 2T, & 2G, & 2G, & 3H, & 2H,,

consistent with the energy-levels sketched in figure 5.3.
2) Matrix commutators:

a) Let A1 and )\, be hermitian matrices. Show that if we define \s by the relation [5\1, 5\2] =
ij\g, then 5\3 is also a hermitian matrix.

b) For the Lie group O(n), the matrices “\” are real n-by-n skew symmetric matrices.
Show that if A; and A, are real skew symmetric matrices, then so is [A;, Ay].

c¢) For the Lie group Sp(2n,R), the i\ matrices are of the form

a b
= (0 )

where a is a real n-by-n matrix and b and ¢ are symmetric (e’ = a and b7 = b) real
n-by-n matrices. Show that the commutator of any two matrices of this form is also
of this form.

3 Euler angles and SU(2): Parametrize the elements of SU(2) as
U = exp{—ipds/2} exp{—ifda/2} exp{—irpo3/2},
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a) Show that Hopf : S — S? is the projection of S® ~ SU(2) onto the coset space
5% ~ SU(2)/U(1), where U(1) is the subgroup {exp(—iwd3/2)}.. Concude that Hopf
takes (6, ¢,v) — (0,¢), where 6 and ¢ are spherical polar co-ordinates on the two-
sphere.

b) Show that .
U-ldU = —%&i Ol

where

Qf = sintydf —sinfcos de,
QF = costdf + sinfsinp de,
Q= dy+cosOdo.

Compare these 1-forms with the components
wx = sinqﬁé—sin@cosqﬁé,
wy = costhf —sinfsiny o,
Wy = @D + cos 6 gb

of the angular velocity w of a body with respect to the body-fired XY Z.
¢) (Optional) Now show that

_ [
AUU~t = —50 Qb

where
Qn = —singdf+sinfcosvpdi,
OF = cos ¢ df) 4 sin 0 sin ¢ dip,
QF = do+cosfdi,

Compare these 1-forms with components w,, wy, w, of the same angular velocity vector
w, but now with respect to the space-fized xyz frame.

4) Class and group volume:

a) In the lecture notes I claimed that the volume fraction of the group SU(2) occupied by
rotations through angles lying between 6 and 6 + df is sin?(6/2)df /7. By considering

the geometry of the three-sphere, show that this is correct.
b) Show that

/ tr [(U~1dU)%] = 247
SU(2)



c¢) Suppose we have a map g : R® — SU(2) such that g(z) goes to the identity element at
infinity. Consider the integral

Sl

_ 1 —1 3

where the 3-form tr (g7 'dg)? is the pull-back to R? of the form tr [(U~'dU)?] on SU(2).
Show that if we vary ¢ — g + dg, then

6S[g] = 2417T2 /Rgd{i%tr [(97'09) (g7 dg)*]} =0,

and so S[g] is topological invariant of the map g. Conclude that the functional S[g]
is an integer, that integer being the Brouwer degree, or winding number, of the map
g:S%— 53

5) Campbell-Baker-Hausdorff Formulae: Here are some useful formula for working

with exponentials of matrices that do not commute with each other.

a) Let X and X be matrices. Show that
1
eXYe X =Y +[X, Y] + 51&2[)(, X, Y]]+,

the terms on the right being the series expansion of explad(tX)]Y. A proof is sketched
in a footnote in the lecture notes, but I want you to fill in the details.
b) Let X and §X be matrices. Show that

1
e XeXHX — 1+/ e oXeNdt + O [(0X)?]
0

= 140X XX+ XXX 4
_e—ad(X)
= 1+ (W) §X + O [(6X)?]

¢) By expanding out the exponentials, show that

l .
€X6Y — €X+Y+2 [X,Y]—l—hlghor7

where “higher” means terms higher order in X,Y. The next two terms are, in fact,
X XY+ Y Y X
6) SU(3): Here are some simple results that come from playing with the Gell-Mann lambda

matrices, as well as practice at decomposing tensor products.

The totally antisymmetric structure constants, f;;x, and a set of totally symmetric con-
stants d;;;, are defined by

1 1
fijk = 5131" ()\z [)\ja )\k]), dijk = 5131" ()\Z{)\j, )\k})



Let ij(g) be the matrices representing SU(3) in “8” — the eight-dimensional adjoint rep-

resentation.

a)

Show that

fijk = DS(Q)Dfm(g)Dzn(g)flmm
dig. = Dj(9)D5,,(9) D3 (9) dtimn,
(1)

and so fi;r and d;ji are invariant tensors in the same sense that 0;; and ¢;, ,, are
invariant tensors for SO(n).

Let w; = fipujvp. Show that if u; — D (g)u; and v; — Df(g)v;, then w; — D (g)w;.
Similarly for w; = d;jpujvp. (Hint: show first that the D?® matrices are real and
orthogonal.) Deduce that f;;; and d;;, are Clebsh-Gordan coefficients for the 8 & 8
part of the decomposition

SRI=1G8H8S®10d 10® 27.

Similarly show that .5 and the lambda matrices (\;)ns can be regarded as Clebsch-
Gordan coefficients for the decomposition

303=1®8.

Use the graphical method, introduced in class, of plotting weights and pealing off irreps
to obtain the tensor product decomposition in part b).



