Physics 509 Homework 0
Prof. M. Stone
Spring 2021

1 Index Gymnastics and Einstein Convention

Note that no distinction is made between raised and lowered indices in the problem.
(i) See (ii) with $\mathbf{y} \rightarrow \mathbf{x}$.
(ii) $\mathbf{x} \cdot \mathbf{y}=\left(x^{\mu} \hat{\mathbf{e}}_{\mu}\right)\left(y^{\nu} \hat{\mathbf{e}}_{\nu}\right)=x^{\mu} y^{\nu} \underbrace{\hat{\mathbf{e}}_{\mu} \hat{\mathbf{e}}_{\nu}}_{=\delta_{\mu \nu}}=x^{\mu} y_{\mu}$.
(iii) Note that $\delta_{\mu \nu} \delta_{\nu \rho}=1$ if and only if $\mu=\rho$. This agrees with $\delta_{\mu \rho}$ for all values of μ and ρ, hence $\delta_{\mu \nu} \delta_{\nu \rho}=\delta_{\mu \rho}$.
(iv) $a_{\mu}=a_{\nu}\left(\hat{\mathbf{e}}_{\nu} \cdot \hat{\mathbf{e}}_{\mu}\right)=a_{\nu} \delta_{\mu \nu}$.
(v) $\delta_{\mu \mu}=\sum_{i=1}^{3} 1=3$.
(a) Writing out both sides of the expression explicitly, one finds on the LHS

$$
\begin{aligned}
& \left(A^{\mu} B_{\mu}\right)\left(C^{\nu} D_{\nu}\right)=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\left(c_{1} d_{1}+c_{2} d_{2}+c_{3} d_{3}\right) \\
& =a_{1} b_{1} c_{1} d_{1}+a_{1} b_{1} c_{2} d_{2}+a_{1} b_{1} c_{3} d_{3}+a_{2} b_{2} c_{1} d_{1}+a_{2} b_{2} c_{2} d_{2}+a_{2} b_{2} c_{3} d_{3} \\
& \quad+a_{3} b_{3} c_{1} d_{1}+a_{3} b_{3} c_{2} d_{2}+a_{3} b_{3} c_{3} d_{3},
\end{aligned}
$$

whereas on the RHS,

$$
\begin{aligned}
& \left(A^{\mu} C^{\nu}\right)\left(B_{\mu} D_{\nu}\right) \\
& \quad=a_{1} c_{1} b_{1} d_{1}+a_{1} c_{2} b_{1} d_{2}+a_{1} c_{3} b_{1} d_{3}+a_{2} c_{1} b_{2} d_{1} \\
& \quad+a_{2} c_{2} b_{2} d_{2}+a_{2} c_{3} b_{2} d_{3} \\
& \\
& \quad+a_{3} c_{1} b_{3} d_{1}+a_{3} c_{2} b_{3} d_{2}+a_{3} c_{3} b_{3} d_{3} .
\end{aligned}
$$

These expressions are clearly equal.
(b) Suppose $A_{\mu \nu}=-A_{\mu \nu}$ and $B^{\mu \nu}=B^{\nu \mu}$. Then writing out terms explicitly yields

$$
A_{\mu \nu} B^{\mu \nu}=a_{11} b_{11}+a_{12} b_{12}+a_{13} b_{13}+a_{21} b_{21}+a_{22} b_{22}+a_{23} b_{23}+a_{31} b_{31}+a_{32} b_{32}+a_{33} b_{33} .
$$

Cancelling all the diagonal terms since $a_{i i}=-a_{i i} \Longrightarrow a_{i i}=0$ for any i and replacing $a_{j i}=-a_{i j}$ and $b_{j i}=b_{i j}$ whenever $i<j$ yields

$$
A_{\mu \nu}=a_{12} b_{12}+a_{13} b_{13}+a_{23} b_{23}-a_{12} b_{12}-a_{13} b_{13}-a_{23} b_{23}=0 .
$$

This can be shown more concisely by relabeling indices:

$$
A_{\mu \nu} B^{\mu \nu} \stackrel{\mu \leftrightarrow \nu}{\longrightarrow} A_{\nu \mu} B^{\nu \mu}=-A_{\mu \nu} B^{\mu \nu} \Longrightarrow A_{\mu \nu} B^{\mu \nu}=0 .
$$

The last equality follows since simply relabelling indices should not change the result.

2 Antisymmetry

(a) It suffices to show that 123, 231, and 312 are all even permutations of 123:

$$
\begin{aligned}
& 123 \stackrel{\text { id }}{\longmapsto} 123 \\
& 123 \stackrel{(12)}{\longmapsto} 213 \stackrel{(23)}{\longmapsto} 231 \\
& 123 \stackrel{(23)}{\stackrel{(12)}{\longmapsto}} 132 \stackrel{(12)}{\longmapsto} 312 .
\end{aligned}
$$

Each of these contain an even number of transpositions and are therefore even permutations: $\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1$.

In contrast,

$$
1234 \stackrel{(12)}{\longmapsto} 2134 \stackrel{(23)}{\longmapsto} 2314 \stackrel{(34)}{\longmapsto} 2341
$$

contains an odd number of transpositions; therefore, $\epsilon_{1234}=-\epsilon_{2341}$.
(b) First, note that only the relative permutations between unprimed and primed indices matters since

$$
\epsilon_{i j k} \epsilon_{i^{\prime} j^{\prime} k^{\prime}}=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)=\operatorname{sgn}(\sigma \tau),
$$

where σ and τ act on unprimed and primed indices respectively. Without loss of generality let τ denote a permutation of the primed indices relative to $i j k$. Then

$$
\begin{aligned}
& \epsilon_{i j k} \epsilon_{i^{\prime} j^{\prime} k^{\prime}}=\sum_{\tau \in S_{3}} \operatorname{sgn}(\tau) \delta_{i \tau\left(i^{\prime}\right)} \delta_{j \tau\left(j^{\prime}\right)} \delta_{k \tau\left(k^{\prime}\right)} \\
&=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}}-\delta_{i j^{\prime}} \delta_{j i^{\prime}} \delta_{k k^{\prime}}+\delta_{i j^{\prime}} \delta_{j k^{\prime}} \delta_{k i^{\prime}}-\delta_{i k^{\prime}} \delta_{j j^{\prime}} \delta_{k i^{\prime}} \\
&+\delta_{i k^{\prime}} \delta_{j i^{\prime}} \delta_{k j^{\prime}}-\delta_{i i^{\prime}} \delta_{j k^{\prime}} \delta_{k j^{\prime}}
\end{aligned}
$$

(c) Setting $i=i^{\prime}$ in part (b) yields

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i j^{\prime} k^{\prime}}=\delta_{j j^{\prime}} \delta_{k k^{\prime}}-\delta_{j k^{\prime}} \delta_{k j^{\prime}} \tag{1}
\end{equation*}
$$

(d) The result from (b) clearly generalizes to

$$
\epsilon_{i j k \ell} \epsilon_{i^{\prime} j^{\prime} k^{\prime} \ell^{\prime}}=\sum_{\tau \in S_{4}} \operatorname{sgn}(\tau) \delta_{i \tau\left(i^{\prime}\right)} \delta_{j \tau\left(j^{\prime}\right)} \delta_{k \tau\left(k^{\prime}\right)} \delta_{\ell \tau\left(\ell^{\prime}\right)}
$$

Setting $i=i^{\prime}$, we recover a similar result to that of part (b) (as expected):

$$
\epsilon_{i j k \ell} \epsilon_{i^{\prime} j^{\prime} k^{\prime} \ell^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}}-\delta_{i j^{\prime}} \delta_{j i^{\prime}} \delta_{k k^{\prime}}+\delta_{i j^{\prime}} \delta_{j k^{\prime}} \delta_{k i^{\prime}}-\delta_{i k^{\prime}} \delta_{j j^{\prime}} \delta_{k i^{\prime}}+\delta_{i k^{\prime}} \delta_{j i^{\prime}} \delta_{k j^{\prime}}-\delta_{i i^{\prime}} \delta_{j k^{\prime}} \delta_{k j^{\prime}}
$$

3 Vector Products

(i) By definition, $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=a_{k}\left(\epsilon_{i j k} b_{i} c_{j}\right)=\epsilon_{i j k} a_{k} b_{i} c_{j}$. This is clearly invariant under any even permutation of indices which shows that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

(ii) Plugging in the definition and using our earlier results,

$$
\begin{aligned}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =\mathbf{a} \times\left(\epsilon_{i j k} b_{j} c_{k} \hat{\mathbf{e}}_{i}\right) \\
& =\epsilon_{i j^{\prime} k^{\prime}} \epsilon_{i j k} a_{k^{\prime}} b_{j} c_{k} \hat{\mathbf{e}}_{j^{\prime}} \\
& =\left(\delta_{j j^{\prime}} \delta_{k k^{\prime}}-\delta_{j k^{\prime}} \delta_{k j^{\prime}}\right) a_{k^{\prime}} b_{j} c_{k} \hat{\mathbf{e}}_{j^{\prime}} \\
& =a_{k} c_{k} b_{j} \hat{\mathbf{e}}_{j}-a_{j} b_{j} c_{k} \hat{\mathbf{e}}_{k} .
\end{aligned}
$$

Expressing this in vector notation yields

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) . \tag{2}
\end{equation*}
$$

(iii) Again, using index notation and previous identities,

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) & =\left(\epsilon_{i j k} a_{j} b_{k} \hat{\mathbf{e}}_{i}\right) \cdot\left(\epsilon_{i^{\prime} j^{\prime} k^{\prime}} c_{j^{\prime}} d_{k^{\prime}} \hat{\mathbf{e}}_{i^{\prime}}\right) & & \\
& =\left(\epsilon_{i j k} a_{j} b_{k}\right)\left(\epsilon_{i j^{\prime} k^{\prime}} c_{j^{\prime}} d_{k^{\prime}}\right) & & \left(\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{i^{\prime}}=\delta_{i i^{\prime}}\right) \\
& =\left(\delta_{j j^{\prime}} \delta_{k k^{\prime}}-\delta_{j k^{\prime}} \delta_{k^{\prime}}\right) a_{j} b_{k} c_{j^{\prime}} d_{k^{\prime}} & & (\text { by (1) }) \\
& =a_{j} b_{k} c_{j} d_{k}-a_{j} b_{k} c_{k} d_{j} . & &
\end{aligned}
$$

Expressing this in vector notation yields

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \tag{3}
\end{equation*}
$$

(iv) First consider the spherical law of cosines,

$$
\begin{equation*}
\cos (c)=\cos (a) \cos (b)+\sin (a) \sin (b) \cos (C), \tag{4}
\end{equation*}
$$

where the arc lengths (angles between the unit vectors), a, b, c, and angle C are shown in

Figure 1: Definitions of arc lengths, angles, and vectors used in the derivation of the law of spherical cosines. Note that the vectors \mathbf{u}, \mathbf{w}, and \mathbf{v} are placed at the origin (center of the sphere) and are of unit length.
figure 1. Using the familiar identities,

$$
\mathbf{a} \cdot \mathbf{b}=a b \cos (\theta) \quad \text { and } \quad|\mathbf{a} \times \mathbf{b}|=a b \sin (\theta),
$$

and making the formal substitutions $\mathbf{a} \rightarrow \mathbf{u}, \mathbf{b} \rightarrow \mathbf{v}, \mathbf{c} \rightarrow \mathbf{u}$, and $\mathbf{d} \rightarrow \mathbf{w}$ (so our notation is consistent with that in figure 1), the LHS of equation (3) can be written as

$$
(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{w})=\sin (a) \sin (b) \cos (C) .
$$

The RHS of equation (3) yields

$$
(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{w})-(\mathbf{u} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{w})=\cos (c)-\cos (a) \cos (b),
$$

which rearranges to the desired result (equation (4)).
The spherical law of sines is

$$
\begin{equation*}
\frac{\sin (A)}{\sin (a)}=\frac{\sin (B)}{\sin (b)}=\frac{\sin (C)}{\sin (c)}, \tag{5}
\end{equation*}
$$

where a, b, and c are the arcs on the surface of the sphere (equivalently, the corresponding angles between \mathbf{u}, \mathbf{v}, and \mathbf{w} since the sphere is of unit radius) and A, B, and C are the spherical angles opposite their respective arcs (e.g., the relationship between c and C is depicted in figure 11.

Following the hint provided, we first prove the identity:

$$
\begin{equation*}
\mathbf{a} \cdot[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a} \times \mathbf{c})]=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \tag{6}
\end{equation*}
$$

Plugging in the definition of the cross-product,

$$
\begin{aligned}
\mathbf{a} \cdot[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a} \times \mathbf{c})] & =\mathbf{a} \cdot\left[\left(\epsilon_{i j k} a_{j} b_{k} \hat{\mathbf{e}}_{i}\right) \times\left(\epsilon_{i^{\prime} j^{\prime} k^{\prime}} a_{j^{\prime}} b_{k^{\prime}} \hat{\mathbf{e}}_{i^{\prime}}\right)\right] \\
& =\mathbf{a} \cdot\left[\epsilon_{\ell i i^{\prime}} \epsilon_{i j k} \epsilon_{i^{\prime} j^{\prime} k^{\prime}} a_{j} b_{k} a_{j^{\prime}} b_{k^{\prime}} \hat{\mathbf{e}}_{\ell}\right] \\
& =\epsilon_{\ell i i^{\prime}} \epsilon_{i j k} \epsilon_{i^{\prime} j^{\prime} k^{\prime}} a_{\ell} a_{j} b_{k} a_{j^{\prime}} b_{k^{\prime}} \\
& =\left(\delta_{i^{\prime} j} \delta_{\ell k}-\delta_{i^{\prime} k} \delta_{\ell j}\right) \epsilon_{i^{\prime} j^{\prime} k^{\prime}} a_{\ell} a_{j} b_{k} a_{j^{\prime}} b_{k^{\prime}} \quad(\text { by (1) }) \\
& =\underbrace{\epsilon_{j j^{\prime} k^{\prime}} a_{k} a_{j} a_{j^{\prime}} b_{k} c_{k^{\prime}}}_{\propto(\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c}=0} \underbrace{-\epsilon_{k j^{\prime} k^{\prime}} a_{\ell} a_{\ell} a_{j^{\prime}} b_{k} c_{k^{\prime}}}_{=\epsilon_{j^{\prime} k k^{\prime}} a_{j^{\prime}} b_{k} c_{k^{\prime}}} \\
& =a_{i}\left(\epsilon_{i j k} b_{j} c_{k}\right)
\end{aligned} \quad \text { (relabelling indices). }
$$

Note, in the second to last line, $a_{\ell} a_{\ell}=1$ since these are unit vectors. This establishes identity (6).

Using this formula with $\mathbf{a} \rightarrow \mathbf{u}, \mathbf{b} \rightarrow \mathbf{v}$, and $\mathbf{c} \rightarrow \mathbf{w}$ yields

$$
\begin{equation*}
\mathbf{u} \cdot[(\mathbf{u} \times \mathbf{v}) \times(\mathbf{u} \times \mathbf{w})]=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) \tag{7}
\end{equation*}
$$

The RHS of (7) is invariant under even permutations of vectors (from part (i)). This implies

$$
\begin{aligned}
|(\mathbf{u} \times \mathbf{v}) \times(\mathbf{u} \times \mathbf{w})|= & |(\mathbf{v} \times \mathbf{w}) \times(\mathbf{v} \times \mathbf{u})|=|(\mathbf{w} \times \mathbf{u}) \times(\mathbf{w} \times \mathbf{v})| \\
& \Longrightarrow \sin (a) \sin (b) \sin (C)=\sin (a) \sin (c) \sin (B)=\sin (b) \sin (c) \sin (A)
\end{aligned}
$$

which reduces to the desired result, equation (5). Note that the angle between $(\mathbf{u} \times \mathbf{v})$ and $(\mathbf{u} \times \mathbf{w})$, for example, is just C.

4 Bernoulli and Vector Products

Let's first rewrite the expression $\mathbf{u} \times(\boldsymbol{\nabla} \times \mathbf{v})$ in index notation.

$$
\begin{array}{rlr}
\mathbf{u} \times(\boldsymbol{\nabla} \times \mathbf{v}) & =\mathbf{u} \times\left(\epsilon_{i j k}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{k}\right) \\
& =\epsilon_{i^{\prime} j^{\prime} k^{\prime}} u_{i^{\prime}}\left(\epsilon_{i j k}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{k}\right)_{j^{\prime}} \hat{\mathbf{e}}_{k^{\prime}} \\
& =\epsilon_{i^{\prime} k k^{\prime}} \epsilon_{i j k} u_{i^{\prime}}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{k^{\prime}} \\
& =-\epsilon_{k i^{\prime} k^{\prime}} \epsilon_{k i j} u_{i^{\prime}}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{k^{\prime}} \\
& =-\left(\delta_{i i^{\prime}} \delta_{j k^{\prime}}-\delta_{i k^{\prime}} \delta_{j k^{\prime}}\right) u_{i^{\prime}}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{k^{\prime}} \\
& =u_{j}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{i}-u_{i}\left(\partial_{i} v_{j}\right) \hat{\mathbf{e}}_{j} . & \text { (re-order indices) }
\end{array}
$$

This expression is sometimes written using Feynman's subscript notation,

$$
\mathbf{u} \times(\boldsymbol{\nabla} \times \mathbf{v})=\nabla_{\mathbf{v}}(\mathbf{u} \cdot \mathbf{v})-(\mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{v}
$$

where $\nabla_{\mathbf{v}}$ acts only on the \mathbf{v} coordinates to the right. Using $\frac{1}{2} \nabla \mathbf{v}^{2}=v_{i}\left(\partial_{j} v_{i}\right) \hat{\mathbf{e}}_{j}$, we can write

$$
\begin{equation*}
\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{v})=\frac{1}{2} \nabla \mathbf{v}^{2}-(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v} . \tag{8}
\end{equation*}
$$

Using this identity, Euler's equation for fluid motion,

$$
\dot{\mathbf{v}}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}=-\boldsymbol{\nabla} h
$$

becomes

$$
\dot{\mathbf{v}}-\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{v})+\frac{1}{2} \nabla \mathbf{v}^{2}=-\boldsymbol{\nabla} h \Longrightarrow \dot{\mathbf{v}}-\mathbf{v} \times \boldsymbol{\omega}=-\nabla\left(\frac{1}{2} \mathbf{v}^{2}+h\right),
$$

where the final expression has been written in terms of the vorticity, $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{v}$.
For steady flow ($\dot{\mathbf{v}}=\mathbf{0}$), the quantity $\frac{1}{2} \mathbf{v}^{2}+h$ is constant along streamlines since

$$
-\mathbf{v} \cdot \nabla\left(\frac{1}{2} \mathbf{v}^{2}+h\right)=\mathbf{v} \cdot(\mathbf{v} \times \boldsymbol{\omega})=0 .
$$

5 Antisymmetry and Determinants

(a) Given the definition of the determinant,

$$
\begin{equation*}
\operatorname{det}(\mathbf{A})=\epsilon_{j_{1} j_{2} \ldots j_{n}} A_{1 j_{1}} A_{2 j_{2}} \ldots A_{n j_{n}}, \tag{9}
\end{equation*}
$$

relabel the indices by a permutation; i.e., by σ such that $\sigma(k)=i_{k}$.

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =\epsilon_{j_{\sigma(1)} j_{\sigma(2)} \ldots j_{\sigma(n)}} A_{\sigma(1) j_{\sigma(1)}} A_{\sigma(2) j_{\sigma(2)}} \ldots A_{\sigma(n) j_{\sigma(n)}} \\
& =\epsilon_{j_{i_{1}} j_{i_{2} \ldots j_{i}}} A_{i_{1} j_{i_{1}}} A_{i_{2} j_{i_{2}}} \ldots A_{i_{n} j_{i_{n}}} \\
& =\epsilon_{i_{1} i_{2} \ldots i_{n}} \epsilon_{j_{1} j_{2} \ldots j_{n}} A_{i_{1} j_{1}} A_{i_{2} j_{2}} \ldots A_{i_{n} j_{n}} .
\end{aligned}
$$

In the last line, the double subscripts, $j_{i_{k}}$ terms, have been relabelled to j_{k} terms. This leaves the product of matrix elements unchanged while introducing a factor of $\epsilon_{i_{1} i_{2} \ldots i_{n}}$ from reordering the $\epsilon_{j_{i_{1}} j_{i_{2}} \ldots j_{i_{n}}}$ term. This establishes the desired result,

$$
\begin{equation*}
\epsilon_{i_{1} i_{2} \ldots i_{n}} \operatorname{det}(\mathbf{A})=\epsilon_{j_{1} j_{2} \ldots j_{n}} A_{i_{1} j_{1}} A_{i_{2} j_{2}} \ldots A_{i_{n} j_{n}} . \tag{10}
\end{equation*}
$$

This result can be used to show the Cauchy-Binet formula, $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.

$$
\begin{aligned}
\operatorname{det}(\mathbf{A B}) & =\epsilon_{j_{1} j_{2} \ldots j_{n}} A_{1 k_{1}} B_{k_{1} j_{1}} A_{2 k_{2}} B_{k_{2} j_{2} \ldots A_{n k_{n}} B_{k_{n} j_{n}}} \\
& =A_{1 k_{1}} A_{2 k_{2}} \ldots A_{n k_{n}} \underbrace{\left(\epsilon_{j_{1} j_{2} \ldots j_{n}} B_{k_{1} j_{1}} B_{k_{2} j_{2}} \ldots B_{k_{n} j_{n}}\right)}_{=\epsilon_{k_{1} k_{2} \ldots k_{n}} \operatorname{det}(\mathbf{B})} \\
& =\underbrace{\epsilon_{k_{1} k_{2} \ldots k_{n}} A_{1 k_{1}} A_{2 k_{2}} \ldots A_{n k_{n}}}_{=\operatorname{det}(\mathbf{A})} \operatorname{det}(\mathbf{B}) \\
& =\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) .
\end{aligned}
$$

(b) We now repeat the above exercise but using the language of differential forms.
(i) Since V is n dimensional, $\left\{\omega \mid \omega: V^{n} \rightarrow \mathbb{C}\right\}$ forms a one-dimensional vector space over \mathbb{C}. Hence, there is only one form up to multiplicative constant.
(ii) Now we want to show $\left\{\mathbf{x}_{k}\right\}_{k=1}^{n}$ are linearly independent if and only if $\omega\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \neq 0$. Or equivalently, $\left\{\mathbf{x}_{k}\right\}_{k=1}^{n}$ linearly dependent if and only if $\omega\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=0$ (this is just the contrapositive). For convenience of notation, write \mathbf{x}_{1} as $\mathbf{x}^{(1)}$.
(\Longrightarrow) First, suppose $\omega\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}\right)=0$. Define the matrix

$$
\mathbf{X}=\left(\mathbf{x}^{(1)} \mathbf{x}^{(2)} \ldots \mathbf{x}^{(n)}\right)
$$

Then,

$$
\begin{aligned}
\omega\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}\right) & =\omega\left(x_{k_{1}}^{(1)} \hat{\mathbf{e}}_{k_{1}}, x_{k_{2}}^{(2)} \hat{\mathbf{e}}_{k_{2}}, \ldots, x_{k_{n}}^{(n)} \hat{\mathbf{e}}_{k_{n}}\right) \\
& =x_{k_{1}}^{(1)} x_{k_{2}}^{(2)} \ldots x_{k_{n}}^{(n)} \omega\left(\hat{\mathbf{e}}_{k_{1}}, \hat{\mathbf{e}}_{k_{2}}, \ldots, \hat{\mathbf{e}}_{k_{n}}\right) \\
& =\underbrace{\epsilon_{k_{1} k_{2} \ldots k_{n}}^{(1)} x_{k_{1}}^{(2)} x_{k_{2}}^{(2)} \ldots x_{k_{n}}^{(n)}}_{=\operatorname{det}(\mathbf{X})} \underbrace{\omega\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \ldots, \hat{\mathbf{e}}_{n}\right)}_{=1} .
\end{aligned}
$$

This shows that if $\omega\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}\right)=0$ then $\operatorname{det}(\mathbf{X})=0$ which implies that $\left\{\mathbf{x}_{k}\right\}_{k=1}^{n}$ are linearly dependent.
(\Longleftarrow) Conversely, if $\left\{\mathbf{x}_{k}\right\}_{k=1}^{n}$ are linearly dependent then, without loss of generality, we can write $\mathbf{x}_{1}=\sum_{k=2}^{n} c_{k} \mathbf{x}_{k}$ for some coefficients c_{k}. Then

$$
\omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)=\sum_{k=2}^{n} c_{k} \omega\left(\mathbf{x}_{k}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)=0
$$

Every term in the sum is zero since the (antisymmetric) form contains repeated elements; hence, the sum is identically zero.

Now define the determinant of the linear map $A: V \rightarrow V$ by

$$
\begin{equation*}
(\operatorname{det} \mathbf{A}) \omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)=\omega\left(\mathbf{A} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A} \mathbf{x}_{n}\right) \tag{11}
\end{equation*}
$$

Writing everything in terms of the standard basis, $\mathbf{x}^{(k)}=x_{i}^{(k)} \hat{\mathbf{e}}_{i}, \mathbf{A} \mathbf{x}^{(k)}=A_{i j} x_{j}^{(k)} \hat{\mathbf{e}}_{i}$, and using $\omega\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \ldots, \hat{\mathbf{e}}_{n}\right)=1$, one finds

$$
\begin{array}{rlr}
\omega\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}\right) & =\omega\left(x_{j_{1}}^{(1)} \hat{\mathbf{e}}_{j_{2}}, x_{j_{2}}^{(2)} \hat{\mathbf{e}}_{j_{2}}, \ldots, x_{j_{n}}^{(n)} \hat{\mathbf{e}}_{j_{n}}\right) \\
& =x_{j_{1}}^{(1)} x_{j_{2}}^{(2)} \ldots x_{j_{n}}^{(n)} \omega\left(\hat{\mathbf{e}}_{j_{2}}, \hat{\mathbf{e}}_{j_{2}}, \ldots, \hat{\mathbf{e}}_{j_{n}}\right) & \\
& =\epsilon_{j_{1} j_{2} \ldots j_{n}} x_{j_{1}}^{(1)} x_{j_{2}}^{(2)} \ldots x_{j_{n}}^{(n)} \underbrace{\omega\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \ldots, \hat{\mathbf{e}}_{n}\right)}_{=1} & \text { (by skew-symmetry) }
\end{array}
$$

Similarly,

$$
\begin{aligned}
\omega\left(\mathbf{A} \mathbf{x}_{1}, \mathbf{A} \mathbf{x}_{2}, \ldots, \mathbf{A} \mathbf{x}_{n}\right) & =\omega\left(A_{i_{1} j_{1}} x_{j_{1}}^{(1)} \hat{\mathbf{e}}_{i_{1}}, A_{i_{2} j_{2}} x_{j_{2}}^{(2)} \hat{\mathbf{e}}_{i_{2}}, \ldots, A_{i_{n} j_{n}} x_{j_{n}}^{(n)} \hat{\mathbf{e}}_{i_{n}}\right) \\
& =A_{i_{1} j_{1}} x_{j_{1}}^{(1)} A_{i_{2} j_{2}} x_{j_{2}}^{(2)} \ldots A_{i_{n} j_{n}} x_{j_{n}}^{(n)} \omega\left(\hat{\mathbf{e}}_{i_{1}}, \hat{\mathbf{e}}_{i_{2}}, \ldots, \hat{\mathbf{e}}_{i_{n}}\right) \\
& =\epsilon_{i_{1} i_{2} \ldots i_{n}} A_{i_{1} j_{1}} A_{i_{2} j_{2}} \ldots A_{i_{n} j_{n}} x_{j_{1}}^{(1)} x_{j_{2}}^{(2)} \ldots x_{j_{n}}^{(n)} \underbrace{\omega\left(\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \ldots, \hat{\mathbf{e}}_{n}\right)}_{=1} .
\end{aligned}
$$

Using these expressions in equation (11) reduces to

$$
\operatorname{det}(\mathbf{A})=\epsilon_{i_{1} i_{2} \ldots i_{n}} \epsilon_{j_{1} j_{2} \ldots j_{n}} A_{i_{1} j_{1}} A_{i_{2} j_{2}} \ldots A_{i_{n} j_{n}}
$$

which agrees with equation 10 .
The proof of the Cauchy-Binet formula is now trivial:

$$
\begin{aligned}
(\operatorname{det} \mathbf{A})(\operatorname{det} \mathbf{B}) \omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right) & =(\operatorname{det} \mathbf{A}) \omega\left(\mathbf{B} \mathbf{x}_{1}, \mathbf{B} \mathbf{x}_{2}, \ldots, \mathbf{B} \mathbf{x}_{n}\right) \\
& =\omega\left(\mathbf{A B} \mathbf{x}_{1}, \mathbf{A B} \mathbf{x}_{2}, \ldots, \mathbf{A B} \mathbf{x}_{n}\right) \\
& =(\operatorname{det} \mathbf{A B}) \omega\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)
\end{aligned}
$$

