
Physics 509 Homework 0 Prof. M. Stone

Spring 2021 University of Illinois

1 Index Gymnastics and Einstein Convention

Note that no distinction is made between raised and lowered indices in the problem.

(i) See (ii) with y→ x.

(ii) x · y = (xµêµ)(yν êν) = xµyν êµêν︸︷︷︸
=δµν

= xµyµ.

(iii) Note that δµνδνρ = 1 if and only if µ = ρ. This agrees with δµρ for all values of µ and ρ, hence

δµνδνρ = δµρ.

(iv) aµ = aν(êν · êµ) = aνδµν .

(v) δµµ =
∑3

i=1 1 = 3.

(a) Writing out both sides of the expression explicitly, one finds on the LHS

(AµBµ)(CνDν) = (a1b1 + a2b2 + a3b3)(c1d1 + c2d2 + c3d3)

= a1b1c1d1 + a1b1c2d2 + a1b1c3d3 + a2b2c1d1 + a2b2c2d2 + a2b2c3d3

+ a3b3c1d1 + a3b3c2d2 + a3b3c3d3,

whereas on the RHS,

(AµCν)(BµDν)

= a1c1b1d1 + a1c2b1d2 + a1c3b1d3 + a2c1b2d1 + a2c2b2d2 + a2c3b2d3

+ a3c1b3d1 + a3c2b3d2 + a3c3b3d3.

These expressions are clearly equal.

(b) Suppose Aµν = −Aµν and Bµν = Bνµ. Then writing out terms explicitly yields

AµνB
µν = a11b11 + a12b12 + a13b13 + a21b21 + a22b22 + a23b23 + a31b31 + a32b32 + a33b33.

Cancelling all the diagonal terms since aii = −aii =⇒ aii = 0 for any i and replacing

aji = −aij and bji = bij whenever i < j yields

Aµν = a12b12 + a13b13 + a23b23 − a12b12 − a13b13 − a23b23 = 0.
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This can be shown more concisely by relabeling indices:

AµνB
µν µ↔ν7−−−→ AνµB

νµ = −AµνBµν =⇒ AµνB
µν = 0.

The last equality follows since simply relabelling indices should not change the result.

2 Antisymmetry

(a) It suffices to show that 123, 231, and 312 are all even permutations of 123:

123
id7−→ 123

123
(12)7−−→ 213

(23)7−−→ 231

123
(23)7−−→ 132

(12)7−−→ 312.

Each of these contain an even number of transpositions and are therefore even permutations:

ε123 = ε231 = ε312 = 1.

In contrast,

1234
(12)7−−→ 2134

(23)7−−→ 2314
(34)7−−→ 2341

contains an odd number of transpositions; therefore, ε1234 = −ε2341.

(b) First, note that only the relative permutations between unprimed and primed indices matters

since

εijkεi′j′k′ = sgn(σ) sgn(τ) = sgn(στ),

where σ and τ act on unprimed and primed indices respectively. Without loss of generality let

τ denote a permutation of the primed indices relative to ijk. Then

εijkεi′j′k′ =
∑
τ∈S3

sgn(τ)δiτ(i′)δjτ(j′)δkτ(k′)

= δii′δjj′δkk′ − δij′δji′δkk′ + δij′δjk′δki′ − δik′δjj′δki′

+ δik′δji′δkj′ − δii′δjk′δkj′ .

(c) Setting i = i′ in part (b) yields

εijkεij′k′ = δjj′δkk′ − δjk′δkj′ . (1)

(d) The result from (b) clearly generalizes to

εijk`εi′j′k′`′ =
∑
τ∈S4

sgn(τ)δiτ(i′)δjτ(j′)δkτ(k′)δ`τ(`′).
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Setting i = i′, we recover a similar result to that of part (b) (as expected):

εijk`εi′j′k′`′ = δii′δjj′δkk′ − δij′δji′δkk′ + δij′δjk′δki′ − δik′δjj′δki′ + δik′δji′δkj′ − δii′δjk′δkj′ .

3 Vector Products

(i) By definition, a · (b× c) = ak(εijkbicj) = εijkakbicj . This is clearly invariant under any even

permutation of indices which shows that

a · (b× c) = b · (c× a) = c · (a× b).

(ii) Plugging in the definition and using our earlier results,

a× (b× c) = a× (εijkbjckêi)

= εij′k′εijkak′bjckêj′

= (δjj′δkk′ − δjk′δkj′)ak′bjckêj′ (by (1))

= akckbj êj − ajbjckêk.

Expressing this in vector notation yields

a× (b× c) = b(a · c)− c(a · b). (2)

(iii) Again, using index notation and previous identities,

(a× b) · (c× d) = (εijkajbkêi) · (εi′j′k′cj′dk′ êi′)

= (εijkajbk)(εij′k′cj′dk′) (êi · êi′ = δii′)

= (δjj′δkk′ − δjk′δkj′)ajbkcj′dk′ (by (1))

= ajbkcjdk − ajbkckdj .

Expressing this in vector notation yields

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (3)

(iv) First consider the spherical law of cosines,

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C), (4)

where the arc lengths (angles between the unit vectors), a, b, c, and angle C are shown in
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Figure 1: Definitions of arc lengths, angles, and vectors used in the derivation of the law of spherical
cosines. Note that the vectors u, w, and v are placed at the origin (center of the sphere) and are of
unit length.

figure 1. Using the familiar identities,

a · b = ab cos(θ) and |a× b| = ab sin(θ),

and making the formal substitutions a→ u, b→ v, c→ u, and d→ w (so our notation is

consistent with that in figure 1), the LHS of equation (3) can be written as

(u× v) · (u×w) = sin(a) sin(b) cos(C).

The RHS of equation (3) yields

(u · u)(v ·w)− (u · v)(u ·w) = cos(c)− cos(a) cos(b),

which rearranges to the desired result (equation (4)).

The spherical law of sines is

sin(A)

sin(a)
=

sin(B)

sin(b)
=

sin(C)

sin(c)
, (5)

where a, b, and c are the arcs on the surface of the sphere (equivalently, the corresponding

angles between u, v, and w since the sphere is of unit radius) and A, B, and C are the spherical

angles opposite their respective arcs (e.g., the relationship between c and C is depicted in

figure 1).
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Following the hint provided, we first prove the identity:

a · [(a× b)× (a× c)] = a · (b× c). (6)

Plugging in the definition of the cross-product,

a · [(a× b)× (a× c)] = a ·
[
(εijkajbkêi)× (εi′j′k′aj′bk′ êi′)

]
= a ·

[
ε`ii′εijkεi′j′k′ajbkaj′bk′ ê`

]
= ε`ii′εijkεi′j′k′a`ajbkaj′bk′

= (δi′jδ`k − δi′kδ`j)εi′j′k′a`ajbkaj′bk′ (by (1))

= εjj′k′akajaj′bkck′︸ ︷︷ ︸
∝(a×a)·c=0

−εkj′k′a`a`aj′bkck′︸ ︷︷ ︸
=εj′kk′aj′bkck′

= ai(εijkbjck) (relabelling indices).

Note, in the second to last line, a`a` = 1 since these are unit vectors. This establishes identity

(6).

Using this formula with a→ u, b→ v, and c→ w yields

u · [(u× v)× (u×w)] = u · (v ×w). (7)

The RHS of (7) is invariant under even permutations of vectors (from part (i)). This implies

|(u× v)× (u×w)| = |(v ×w)× (v × u)| = |(w × u)× (w × v)|

=⇒ sin(a) sin(b) sin(C) = sin(a) sin(c) sin(B) = sin(b) sin(c) sin(A),

which reduces to the desired result, equation (5). Note that the angle between (u× v) and

(u×w), for example, is just C.

4 Bernoulli and Vector Products

Let’s first rewrite the expression u× (∇× v) in index notation.

u× (∇× v) = u× (εijk(∂ivj)êk)

= εi′j′k′ui′ (εijk(∂ivj)êk)j′ êk′

= εi′kk′εijkui′(∂ivj)êk′

= −εki′k′εkijui′(∂ivj)êk′ (re-order indices)

= −(δii′δjk′ − δik′δjk′)ui′(∂ivj)êk′ (by (1))

= uj(∂ivj)êi − ui(∂ivj)êj .
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This expression is sometimes written using Feynman’s subscript notation,

u× (∇× v) = ∇v(u · v)− (u ·∇)v,

where ∇v acts only on the v coordinates to the right. Using 1
2∇v

2 = vi(∂jvi)êj , we can write

v × (∇× v) =
1

2
∇v2 − (v ·∇)v. (8)

Using this identity, Euler’s equation for fluid motion,

v̇ + (v ·∇)v = −∇h

becomes

v̇ − v × (∇× v) +
1

2
∇v2 = −∇h =⇒ v̇ − v × ω = −∇

(
1

2
v2 + h

)
,

where the final expression has been written in terms of the vorticity, ω = ∇× v.

For steady flow (v̇ = 0), the quantity 1
2v

2 + h is constant along streamlines since

−v · ∇
(

1

2
v2 + h

)
= v · (v × ω) = 0.

5 Antisymmetry and Determinants

(a) Given the definition of the determinant,

det(A) = εj1j2...jnA1j1A2j2 . . . Anjn , (9)

relabel the indices by a permutation; i.e., by σ such that σ(k) = ik.

det(A) = εjσ(1)jσ(2)...jσ(n)Aσ(1)jσ(1)Aσ(2)jσ(2) . . . Aσ(n)jσ(n)

= εji1ji2 ...jinAi1ji1Ai2ji2 . . . Ainjin

= εi1i2...inεj1j2...jnAi1j1Ai2j2 . . . Ainjn .

In the last line, the double subscripts, jik terms, have been relabelled to jk terms. This leaves

the product of matrix elements unchanged while introducing a factor of εi1i2...in from reordering

the εji1ji2 ...jin term. This establishes the desired result,

εi1i2...in det(A) = εj1j2...jnAi1j1Ai2j2 . . . Ainjn . (10)
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This result can be used to show the Cauchy-Binet formula, det(AB) = det(A) det(B).

det(AB) = εj1j2...jnA1k1Bk1j1A2k2Bk2j2 . . . AnknBknjn

= A1k1A2k2 . . . Ankn (εj1j2...jnBk1j1Bk2j2 . . . Bknjn)︸ ︷︷ ︸
=εk1k2...kn det(B)

(by (10))

= εk1k2...knA1k1A2k2 . . . Ankn︸ ︷︷ ︸
=det(A)

det(B) (by (9))

= det(A) det(B).

(b) We now repeat the above exercise but using the language of differential forms.

(i) Since V is n dimensional, {ω |ω : V n → C} forms a one-dimensional vector space over C.

Hence, there is only one form up to multiplicative constant.

(ii) Now we want to show {xk}nk=1 are linearly independent if and only if ω(x1, . . . ,xn) 6= 0.

Or equivalently, {xk}nk=1 linearly dependent if and only if ω(x1, . . . ,xn) = 0 (this is just

the contrapositive). For convenience of notation, write x1 as x(1).

( =⇒ ) First, suppose ω(x(1),x(2), . . . ,x(n)) = 0. Define the matrix

X = (x(1) x(2) . . . x(n)).

Then,

ω(x(1),x(2), . . . ,x(n)) = ω(x
(1)
k1

êk1 , x
(2)
k2

êk2 , . . . , x
(n)
kn

êkn)

= x
(1)
k1
x
(2)
k2
. . . x

(n)
kn
ω(êk1 , êk2 , . . . , êkn)

= εk1k2...knx
(1)
k1
x
(2)
k2
. . . x

(n)
kn︸ ︷︷ ︸

=det(X)

ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸
=1

.

This shows that if ω(x(1),x(2), . . . ,x(n)) = 0 then det(X) = 0 which implies that {xk}nk=1

are linearly dependent.

(⇐= ) Conversely, if {xk}nk=1 are linearly dependent then, without loss of generality, we

can write x1 =
∑n

k=2 ckxk for some coefficients ck. Then

ω(x1,x2, . . . ,xn) =

n∑
k=2

ckω(xk,x2, . . . ,xn) = 0.

Every term in the sum is zero since the (antisymmetric) form contains repeated elements;

hence, the sum is identically zero.
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Now define the determinant of the linear map A : V → V by

(detA)ω(x1,x2, . . . ,xn) = ω(Ax1,Ax2, . . . ,Axn). (11)

Writing everything in terms of the standard basis, x(k) = x
(k)
i êi, Ax(k) = Aijx

(k)
j êi, and using

ω(ê1, ê2, . . . , ên) = 1, one finds

ω(x(1),x(2), . . . ,x(n)) = ω(x
(1)
j1

êj2 , x
(2)
j2

êj2 , . . . , x
(n)
jn

êjn)

= x
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(êj2 , êj2 , . . . , êjn) (ω is multilinear)

= εj1j2...jnx
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸

=1

(by skew-symmetry).

Similarly,

ω(Ax1,Ax2, . . . ,Axn) = ω(Ai1j1x
(1)
j1

êi1 , Ai2j2x
(2)
j2

êi2 , . . . , Ainjnx
(n)
jn

êin)

= Ai1j1x
(1)
j1
Ai2j2x

(2)
j2
. . . Ainjnx

(n)
jn
ω(êi1 , êi2 , . . . , êin)

= εi1i2...inAi1j1Ai2j2 . . . Ainjnx
(1)
j1
x
(2)
j2
. . . x

(n)
jn
ω(ê1, ê2, . . . , ên)︸ ︷︷ ︸

=1

.

Using these expressions in equation (11) reduces to

det(A) = εi1i2...inεj1j2...jnAi1j1Ai2j2 . . . Ainjn ,

which agrees with equation (10).

The proof of the Cauchy-Binet formula is now trivial:

(detA)(detB)ω(x1,x2, . . . ,xn) = (detA)ω(Bx1,Bx2, . . . ,Bxn)

= ω(ABx1,ABx2, . . . ,ABxn)

= (detAB)ω(x1,x2, . . . ,xn).
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