Physics 509 Homework 0 Prof. M. Stone
Spring 2021 University of Illinois

1 Index Gymnastics and Einstein Convention

Note that no distinction is made between raised and lowered indices in the problem.

See (ii) with y — x.

x -y = (ahe,)(y &) = aty” &,8, = ah'y,.
——
=0,
Note that 6,,,0,, = 1 if and only if x = p. This agrees with 4, for all values of ;1 and p, hence

O Ovp = Opp-

ay, = ay(€,-€,) = a,du.
3

Opp = D=1 1 = 3.

Writing out both sides of the expression explicitly, one finds on the LHS

(A“BH)(CVDV) = (a1b1 + asby + agbg)(cldl + codo + ngg)
= arbicidi + a1bicade + arbicads + asbacidy + asbacads + azbacsds

+ agbscidy + agbscads + agbsesds,

whereas on the RHS,

(A*C”)(BuDy)
= a1c1brdy + arcabida + arc3bidz + aacibady + azcabads + azczbads

+ azcibzdy + azcabsds + azcsbsds.

These expressions are clearly equal.

Suppose A, = —A,, and B*" = B"!. Then writing out terms explicitly yields
A B" = a11bi1 + aiebia + a13b13 4 a21ba1 + ag2bao + azzbaz + azibsi + asabsa + aszbss.

Cancelling all the diagonal terms since a; = —a; = a;; = 0 for any ¢ and replacing

Qji = —Qyj and bji = b'ij whenever i < j yields

Ay = a12b12 + a13b13 + ag3baz — a12b12 — a13b13 — azzbaz = 0.



This can be shown more concisely by relabeling indices:
A BR 22 AL BV = —A,,BY — A,,B" =0.

The last equality follows since simply relabelling indices should not change the result.

2 Antisymmetry

(a)

()

(d)

It suffices to show that 123, 231, and 312 are all even permutations of 123:

123 44 193

123 22, 913 ), 939

123 2, 132 12, 319,

Fach of these contain an even number of transpositions and are therefore even permutations:

€123 = €231 = €312 = 1.

In contrast,

(12) (23) (34)

1234 —= 2134 2314+ 2341

contains an odd number of transpositions; therefore, €1934 = —€9341.

First, note that only the relative permutations between unprimed and primed indices matters

since

€ijreir i = sgn(o) sgn(r) = sgn(oT),

where o and 7 act on unprimed and primed indices respectively. Without loss of generality let

7 denote a permutation of the primed indices relative to ijk. Then

€ijk€i' 'k = Z Sgn(7)5i7(i’)5j7(j’)‘5k7(k’)
TESS

= 0401 O — 0457 0ir Optr + 04510k Opir — Oyt 041 Oy
+ Oiks 0jir Ojr — Oiir Ok Oy -

Setting ¢ = ¢ in part (b) yields
Ez'jkeij’k’ = 6jj’5kk’ — jk/(skj/. (1)

The result from (b) clearly generalizes to

Cije€iie = Y SE(T)Sir(1)057(i0)Oor () Oer (1)-
TESY



Setting i = 4’, we recover a similar result to that of part (b) (as expected):

€ijke€i ket = 04t 041 Oty — 045105 Oy =+ 0t O s Opir — O 05 Ot + Oiper Ot Opejr — Gzir O s O -

3 Vector Products

(i) By definition, a- (b x ¢) = ax(e;rbicj) = €jrarbicj. This is clearly invariant under any even

permutation of indices which shows that

a-(bxc)=b-(cxa)=c-(axDb).

(ii) Plugging in the definition and using our earlier results,

a X (b X C) =aXx (fijkbjckéi)
= qj/k/eijkak/bjckéj/
= (5jj’(5kk’ — 5jk/5kj/)ak/bjckéj/ (by )

= akckbjéj — ajbjckék.
Expressing this in vector notation yields

ax (bxc)=b(a-c)—c(a-b). (2)

(iii) Again, using index notation and previous identities,

(a X b) . (C X d) = (eijkajbkéi) . (Ei/j’k/cj/dk’éi’)

= (€ijrajby)(€ijpcirdpr) (€i - &y = i)
05410k — OjarOngr )ajbrcjrdys (by (1))

ajbijdk — ajbkckdj.
Expressing this in vector notation yields

(axb) - (cxd)=(a-c)(b-d)—(a-d)(b-c). (3)

(iv) First consider the spherical law of cosines,
cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C), (4)

where the arc lengths (angles between the unit vectors), a, b, ¢, and angle C' are shown in



Figure 1: Definitions of arc lengths, angles, and vectors used in the derivation of the law of spherical
cosines. Note that the vectors u, w, and v are placed at the origin (center of the sphere) and are of
unit length.

figure [I] Using the familiar identities,
a-b=uabcos(d) and |ax b|=absin(d),

and making the formal substitutions a - u, b = v, ¢ = u, and d — w (so our notation is
consistent with that in figure , the LHS of equation can be written as

(uxv)-(uxw)=sin(a)sin(b) cos(C).
The RHS of equation yields
(u-u)(v-w)—(u-v)(u-w) = cos(c) — cos(a) cos(b),

which rearranges to the desired result (equation (4))).
The spherical law of sines is

sin(A)  sin(B)  sin(C)
sin(a)  sin(b)  sin(c)’ (5)

where a, b, and ¢ are the arcs on the surface of the sphere (equivalently, the corresponding
angles between u, v, and w since the sphere is of unit radius) and A, B, and C are the spherical

angles opposite their respective arcs (e.g., the relationship between ¢ and C' is depicted in
figure [1)).



Following the hint provided, we first prove the identity:
a-[(axb)x(axc)=a-(bxc). (6)
Plugging in the definition of the cross-product,

a-[(axb)x(axc)=a-[(€jrajbeé;) x (ejwajbyéy)]
=a- [efii’eijkfi’j’k’ajbkaj’bk’éﬁ]

= €4;i1€i k€t jkr Qb ajr by

= (040 — 0irk0¢j )€ j1y pajbpajr b (by ()
= ejj/k/akajajrbkcki—ekjrk/agagajrbkck/
x(axa)-c=0 =€/ pp! @t b Clr
= ai(€ijrbjck) (relabelling indices).

Note, in the second to last line, apap, = 1 since these are unit vectors. This establishes identity

Using this formula with a — u, b — v, and ¢ — w yields
u-f(uxv)x (uxw)=u-(vxw). (7)
The RHS of is invariant under even permutations of vectors (from part (i)). This implies

[(uxv)x (uxw)=[(vxw)x(vxu)=[|wxu) X (wxvV)|

= sin(a) sin(b) sin(C') = sin(a) sin(c) sin(B) = sin(b) sin(c) sin(A),

which reduces to the desired result, equation (j5)). Note that the angle between (u x v) and

(u x w), for example, is just C.

4 Bernoulli and Vector Products

Let’s first rewrite the expression u x (V x v) in index notation.

u X (V X V) =ux (Eijk(aﬂ}j)ék)
= €yt (€ijk(0iv;)er) ; €k

= €t €k (0305 €

= —€hitk €kij Ui (O5V) € (re-order indices)
— —(57;7;/ ik — ikléjk/)ui/((?ivj)ék/ (by )

= uj(aivj)éi — ul(aﬂ)])éj



This expression is sometimes written using Feynman’s subscript notation,
ux (Vxv)=Vy(u-v)—(u-V)v,
where V, acts only on the v coordinates to the right. Using %Vv2 = v;(0;v;)€;, we can write

1
VX(VXV):§VV2—(V-V)V.

Using this identity, Euler’s equation for fluid motion,
v+ (v-V)v=-Vh

becomes ) .
V—vx(va)+§Vv2:—Vh — v—vxw_—v<2v2+h),

where the final expression has been written in terms of the vorticity, w = V x v.

For steady flow (v = 0), the quantity %VZ + h is constant along streamlines since

—v-V<;v2+h>:v-(vxw):0.

5 Antisymmetry and Determinants

(a) Given the definition of the determinant,
det(A) = €yjs...jn A1y A2jy - - - Anj
relabel the indices by a permutation; i.e., by o such that o(k) = ix.

det(A) = ejc(l)jo'(Q)"'jo'(’n)Aa(l)ja(l)AJ(Q)jU(Q) s AU(n)ja<n)

= €y digdin Airjay Aingiy - - - Ainjin,

= €iyig..in€irga...jn Airj1 Aings -+ Aipjn-

(8)

In the last line, the double subscripts, j;, terms, have been relabelled to jj terms. This leaves

the product of matrix elements unchanged while introducing a factor of €;,;,. 4, from reordering

the €5, j,,..j;, term. This establishes the desired result,

€irig...in ACE(A) = €5y g Airjs Aiggy - - Al

(10)



This result can be used to show the Cauchy-Binet formula, det(AB) = det(A) det(B).

det(AB) = EJ’1J‘2~~~jnAl/€1 Bkljl A2k2 Bk2j2 s Ankn Bknjn

= Aigy, Aoty - - - Ankr, (€510 5 Bt Brojo - - - Bl (by )
it det(B)
= Chyky.kn Alky A2ky - - - Ank,, det(B) (by ()
—det(A)
= det(A) det(B).

(b) We now repeat the above exercise but using the language of differential forms.

(i) Since V is n dimensional, {w|w : V" — C} forms a one-dimensional vector space over C.

Hence, there is only one form up to multiplicative constant.

(i) Now we want to show {x}}_, are linearly independent if and only if w(x1,...,x,) # 0.
Or equivalently, {x;}}_, linearly dependent if and only if w(x1,...,x,) = 0 (this is just

the contrapositive). For convenience of notation, write x; as x(),

(=) First, suppose w(x,x® ... x(™) = 0. Define the matrix

X = (xM x@ . xM),

Then,
(,u(){(l)’x@)7 ... ,X(”)) = w(xl(cll)éklﬂa;l(gz)ékw o x](;;)ékn)
= ml(cll)xl(fg) s x](g:t)w(ékpékz? ey ékn)
= 6k1k2...kna:,(€ll):::,(3 . a:,(;;) w(ér, és,...,6,).
—det(X) =1

This shows that if w(x™®),x®) ... x(™) = 0 then det(X) = 0 which implies that {x;}7_,

are linearly dependent.

(<= Conversely, if {x;}}_, are linearly dependent then, without loss of generality, we

can write x; = Y ;5 cxXy, for some coefficients ¢;. Then
n
w(x1,X2,...,Xp) = E Crw(Xpy X2, -+« y Xy ) = 0.
k=2

Every term in the sum is zero since the (antisymmetric) form contains repeated elements;

hence, the sum is identically zero.



Now define the determinant of the linear map A: V — V by

(det A) w(x1,x2,...,X,) = w(AX1, AXg,...,AXy). (11)
Writing everything in t f the standard basis, x® = zFle; Ax®) = A;2Me;, and usi
g everything in terms of the standard basis, x'\*) = z;&;, Ax\") = A;;z;"¢;, and using
w(éq,é,...,€,) =1, one finds
wx® x® . xM)) = w(‘xﬁ)éjz,xg)éjw . ,m§:)éjn)
_ (1 (2 M), o a. A . .
=z r . x Cw(e,, 8,0 €85,) (w is multilinear)
= ejlj?,,jnxﬁ)xg) e SL‘S:) w(éy,eés,...,6,) (by skew-symmetry).
=1
Similarly,
1) A 2) . .
w(Axl, AXQ, c. ,AXn) = w(Ailjlxg.l)eil,Aizjgxé)eiz, c. 7Aln]nx§:)eln)
1 2 . .
= Ai1j1$§‘1)Ai2j2$§‘2) . Ainjnxg.:)w(eil y €igy . v ,ein)
1) (2 L .
= eilig...inAilleigjg . Ainjn$§1)$§2) ce .’EEZ) w(el, €, ... ,en) .
=1

Using these expressions in equation ([11]) reduces to
det(A) = €iiy...in €1 ja...jn Airgy Ainga - -+ Ainins

which agrees with equation (|10J).
The proof of the Cauchy-Binet formula is now trivial:
(det A)(det B)w(x1,x2,...,%X,) = (det A)w(Bx1, Bxa,...,Bxy,)

= w(ABx;, ABxy,...,ABx,)
= (det AB)w(x1,X2,...,Xp).
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