
Physics 509 Homework 4 Professor M. Stone

Spring 2023 University of Illinois

1 Old Exam Problem

(a) Taking the exterior derivative of ω,

dω = d

(
1

r3

)
∧ (xdy ∧ dz + zdx ∧ dy + ydz ∧ dx)

+

(
1

r3

)
∧ d (xdy ∧ dz + zdx ∧ dy + ydz ∧ dx) .

But

d

(
1

r3

)
= d

(
x2 + y2 + z2

)−3/2

= −3
(
x2 + y2 + z2

)−5/2
(xdx+ ydy + zdz) (df = (∂if)dxi)

= −3

(
1

r5

)
(xdx+ ydy + zdz) .

Therefore, we find

dω = − 3

r5
(x2 + y2 + z2)︸ ︷︷ ︸

=r2

dx ∧ dy ∧ dz +
3

r3
dx ∧ dy ∧ dz = 0,

where we have used the fact that terms like dx∧ dx vanish because of the antisymmetry of the

wedge product. Hence, ω is closed.

(b) Using a simple change of variables, one finds

Φ =

∫
P
ω =

∫
R2

dx ∧ dy
(1 + x2 + y2)3/2

=

∫ 2π

0

∫ ∞
0

r drdθ

(1 + r2)3/2
= 2π

∫ ∞
0

r dr

(1 + r2)3/2︸ ︷︷ ︸
=1

.

Hence Φ = 2π.

(c) The most direct method to solve this problem is to just plug into the general formula for

the pullback of a p-form (see equation (3)). Using the formula and evaluating all the partial

derivatives, one finds ϕ∗ω = sin θ dθ ∧ dφ. However, there are other ways one might go about

solving this problem. I’ve included a few below.1

Recall that the pullback of a form acting on a vector field is just the form evaluated on the

1These are really all the same.
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pushed forward vector field; i.e.,2

(ϕ∗ω)(X) = ω(ϕ∗X), (1)

where the pushforward is defined as ϕ∗ : TxM → Tϕ(x)N such that

(ϕ∗X)µ =
∂ξµ

∂xν
Xν . (2)

In our case, we need to push forward a vector from the sphere S2 to one in R3 that can be

acted upon by the 2-form ω. In addition to directly plugging into the definition, here are two

possible ways to perform this calculation. The first method yields the evaluation of the form

pulled back to the new manifold whereas the second gives the pulled back form itself.

Method 1: Using equations (1) and (4), one finds the evaluation of the 2-form on S2 to be3

(ϕ∗ω)(X) = ω(ϕ∗X)

=

[
1

R3
(xdydz + ydzdx+ zdxdy)

](
Xθ ∂x

∂θ

∂

∂x
+Xθ ∂y

∂θ

∂

∂y
+Xθ ∂z

∂θ

∂

∂z
,

Xφ ∂x

∂φ

∂

∂x
+Xφ ∂y

∂φ

∂

∂y
+Xφ ∂z

∂φ

∂

∂z

)
=

[
x

(
∂y

∂θ

∂z

∂φ
− ∂z

∂θ

∂y

∂φ

)
+ y

(
∂z

∂θ

∂x

∂φ
− ∂x

∂θ

∂z

∂φ

)
+ z

(
∂x

∂θ

∂y

∂φ
− ∂x

∂θ

∂y

∂φ

)]
XθXφ

R3
.

After plugging in for x, y, and z, evaluating all the partial derivatives, and simplifying, one

finds that

(ϕ∗ω)(X) = sin θXθXφ =⇒ ϕ∗ω = sin θ dθ ∧ dφ.

This method just näıvely plugged in the definitions from chapter 12 of the textbook.

Method 2: Given the change of variables

x = R cosφ sin θ

y = R sinφ sin θ

z = R cos θ,

we can apply the chain rule to write

dx =

(
∂x

∂θ

)
dθ +

(
∂x

∂φ

)
dφ = (−R sinφ sin θ) dφ+ (cosφ cos θ) dθ

dy =

(
∂y

∂θ

)
dθ +

(
∂y

∂φ

)
dφ = (R cosφ sin θ) dφ+ (R sinφ cos θ) dθ

2See equation (12.30) in the textbook.
3As usual, I will stop writing the wedge product explicitly.
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dz =

(
∂z

∂θ

)
dθ +

(
∂z

∂φ

)
dφ = (−R sin θ) dθ.

Plugging these into ω and simplifying one finds

ϕ∗ω =

[
x

(
∂y

∂θ

∂z

∂φ
− ∂z

∂θ

∂y

∂φ

)
+ y

(
∂z

∂θ

∂x

∂φ
− ∂x

∂θ

∂z

∂φ

)
+ z

(
∂x

∂θ

∂y

∂φ
− ∂x

∂θ

∂y

∂φ

)]
dθ ∧ dφ
R3

= sin θ dθ ∧ dφ.

This computation looks just like a change of variables although it is conceptually different.

(d) Using the pullback of the map

ϕ : S2 → R3

: (θ, φ) 7→ (x, y, z)

computed in part (c), one finds∫
S2(R)

ω =

∫
ϕ−1(S2(R))

ϕ∗ω =

∫ 2π

0

∫ π

0
sin θ dθdφ = 4π.

Note that we cannot use Stokes’ theorem here to write
∫
S2(R) ω =

∫
B3(R) dω = 0 (we found

dω = 0 in part (a)) since the 2-form ω is not smooth in the vicinity around the origin.

2 Sphere Area

Before determining the form for the surface “volume” of the n-sphere, we can note that the surface

volume in the neighborhood of êk is given by

ω(êk) = (−1)k+1xk dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn+1.

This is just the volume form for the tangent space at êk. The factor of (−1)k is found by requiring

integration over a small box sitting at êk be positive. Now, the form for the surface “volume” of

the n-sphere should reduce to this in the neighborhood of each êk and should be invariant under

orthogonal transformations. One can easily see that the form that satisfies these conditions is just

ω =
1

n!
εα1α2...αn+1x

α1 dxα2 ∧ · · · ∧ dxαn+1 .

Taking the exterior derivative, one finds

dω = d

(
1

n!
εα1α2...αn+1x

α1 dxα2 ∧ · · · ∧ dxαn+1

)
=

1

n!
εα1α2...αn+1 dx

α1 ∧ dxα2 ∧ · · · ∧ dxαn+1
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=
1

n!
(n+ 1)!︸ ︷︷ ︸
=(n+1)

dx1 ∧ dx2 ∧ · · · ∧ dxn+1.

Using Stokes’ Theorem, we find∫
Sn
ω =

∫
Bn+1

dω = (n+ 1)

∫
Bn+1

dn+1x,

which implies Vol(Sn)/Vol(Bn+1) = n+ 1, as desired.

3 Push and Pull

Let ϕ : M → N and ω ∈
∧p T ∗N . We require ϕ to be invertible so that the pushforward is

well-defined. As a convention, we use the local coordinates {xi} for M and {yi} for N . Recall the

definitions for the pullback and pushforward (equations (12.32) and (12.29), respectively, from the

textbook):

ϕ∗ω =
1

p!
ων1...νp

∂yν1

∂xµ1
· · · ∂y

νp

∂xµp
dxµ1 ∧ · · · ∧ dxµp (pullback) (3)

ϕ∗X = Xν ∂y
µ

∂xν
∂

∂yµ
. (pushforward) (4)

(a) Taking the exterior derivative of the pullback,

d(ϕ∗ω) =
1

p!
d

[
ων1...νp

dyν1

dxµ1
· · · dy

νp

dxµp

]
∧ dxµ1 ∧ · · · ∧ dxµp

=
1

p!

[
∂

∂xµ0
ων1...νp

dyν1

dxµ1
· · · dy

νp

dxµp

]
dxµ0 ∧ dxµ1 ∧ · · · ∧ dxµp

=
1

p!

[
∂

∂xµ0
ων1...νp

]
dyν1

dxµ1
· · · dy

νp

dxµp
dxµ0 ∧ dxµ1 ∧ · · · ∧ dxµp

+
1

p!
ων1...νp

[
∂

∂xµ0
dyν1

dxµ1
· · · dy

νp

dxµp

]
dxµ0 ∧ dxµ1 ∧ · · · ∧ dxµp︸ ︷︷ ︸
=0

,

(product rule)

where, in the last line, the second term vanishes since it is the contraction of a symmetric and

antisymmetric tensor. What remains is the definition of ϕ∗(dω).

(b) Recall that interior multiplication acts as a contraction with the coordinate representation of

the form; i.e.,

iX(ω) =

[
1

p!
ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp
](

Xσ ∂

∂xσ
, · · ·

)
=

1

(p− 1)!
ωσµ2...µpX

σdxµ2 ∧ · · · ∧ dxµp .

(5)

In order to show LX [ϕ∗ω] = ϕ∗Lϕ∗X(ω), we first work out how the pullback behaves with

4



interior multiplication. Using equations (3) and (5) and local coordinates, one finds

iX(ϕ∗ω) =
1

(p− 1)!
ων1...νp

∂yν1

∂xσ
∂yν2

∂xµ2
· · · ∂y

νp

∂xµp
Xσdxµ2 ∧ · · · ∧ dxµp

=
1

(p− 1)!
ων1...νp

∂yν2

∂xµ2
· · · ∂y

νp

∂xµp

(
∂yν1

∂xσ
Xσ

)
︸ ︷︷ ︸

=(ϕ∗X)ν1

dxµ2 ∧ · · · ∧ dxµp = ϕ∗(iϕ∗Xω).

The result follows by using the infinitesimal homotopy relation,

LX(ω) = iXdω + d (iXω) , (6)

and result of the previous part, ϕ∗(dω) = d(ϕ∗ω). Plugging the pullback of ω into (6),

LX(ϕ∗ω) = iXd(ϕ∗ω) + d (iX(ϕ∗ω)) = ϕ∗ [iϕ∗Xdω + d(iϕ∗Xω)] = ϕ∗Lϕ∗X(ω),

as desired.

(c) Starting with the definition of the Lie bracket,

[X,Y ] =

[
Xµ

(
∂

∂xµ
Y ν

)
− Y µ

(
∂

∂xµ
Xν

)]
∂

∂xν
, (7)

one can plug in the pushforward of the vector fields and calculate the result directly.

[ϕ∗X,ϕ∗Y ]ν = (ϕ∗X)µ
(

∂

∂yµ
(ϕ∗Y )ν

)
− (ϕ∗Y )µ

(
∂

∂yµ
(ϕ∗X)ν

)
=

(
∂yµ

∂xλ
Xλ

)[
∂

∂yµ

(
∂yν

∂xσ
Xσ

)]
−
(
∂yµ

∂xλ
Y λ

)[
∂

∂yµ

(
∂yν

∂xσ
Xσ

)]
= Xλ

(
∂yµ

∂xλ
∂

∂yµ

)
︸ ︷︷ ︸

= ∂

∂xλ

(
∂yν

∂xσ
Y σ

)
− Y λ

(
∂yµ

∂xλ
∂

∂yµ

)
︸ ︷︷ ︸

= ∂

∂xλ

(
∂yν

∂xσ
Xσ

)
(chain rule)

=
���������
Xλ

[
∂

∂xσ
∂yν

∂xσ

]
Y σ +

(
∂yν

∂xσ

)
Xλ

(
∂

∂xλ
Y σ

)
−
���������
Y λ

[
∂

∂xσ
∂yν

∂xσ

]
Xσ +

(
∂yν

∂xσ

)
Y λ

(
∂

∂xλ
Xσ

) (∂µ∂ν = ∂ν∂µ)

=

(
∂yν

∂xσ

)
[X,Y ]σ

= (ϕ∗[X,Y ])ν .
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4 Stereographic Coordinates

For this problem, it is convenient to organize our calculation using matrix notation. We let g(S2)

denote the metric on S2, which is given by

g(S2)
µν =

(
1 0

0 sin2(θ)

)
µν

.

we are given the map

ζ : S2 → C

: (θ, φ) 7→ ζ = eiφ tan(θ/2),

and want to compute the new metric on C, g(C). Using the transformation properties for doubly

covariant tensors (i.e., (0, 2)-tensors), we can write

g
(C)
αβ =

∂yµ

∂xα
∂yν

∂xβ
, F IXME

where y1 = θ and y2 = φ denote the coordinates on S2 and x1 = ζ and x2 = ζ̄ denote the coordinates

on C. Since we are given ζ as a function of θ and φ in the problem, it is easier to transform in the

reverse direction and then invert the resulting relationship; i.e.,

g
(C)
αβ

∂xα

∂yµ
∂xβ

∂yν
= g(S2)

µν .

In matrix form, this corresponds to4

J tg(C)J = g(S2),

where the Jacobian matrix is

J =

(
∂ζ
∂θ

∂ζ
∂φ

∂ζ̄
∂θ

∂ζ̄
∂φ

)
=

(
1
2e
iφ sec2

(
θ
2

)
ieiφ tan

(
θ
2

)
1
2e
−iφ sec2

(
θ
2

)
−ie−iφ tan

(
θ
2

)) .
Inverting matrices and going through a bit of arithmetic, one finds

g
(C)
αβ =

2(
1 + |ζ|2

)2
(

0 1

1 0

)
αβ

,

4Be careful here with the indices. The transpose here is necessary so that the metric tensor transforms like a
(0, 2)-tensor (like a quadratic form) rather than a (1, 1)-tensor. See section 10.2.2 in the textbook.
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or equivalently (in the original notation used in the problem),5

g( · , · ) =
2(

1 + |ζ|2
)2 (dζ ⊗ dζ̄ + dζ̄ ⊗ dζ

)
.

The final equality stated in the problem follows immediately since

dζ ⊗ dζ̄ = (dξ + idη)⊗ (dξ + idη) = dξ ⊗ dξ + dη ⊗ dη − idξ ⊗ dη + idη ⊗ dξ.

Hence dζ ⊗ dζ̄ + dζ̄ ⊗ dζ = 2 (dξ ⊗ dξ + dη ⊗ dη), which shows that

g( · , · ) =
4(

1 + |ξ|2 + |η|2
)2 (dξ ⊗ dξ + dη ⊗ dη) ,

as desired.

Finally, note that the corresponding volume forms are just given by6

Ω =
√
g dζ̄ ∧ dζ =

2i(
1 + |ζ|2

)2 dζ̄ ∧ dζ.
Or, in terms of the coordinates ξ and η,

Ω =
√
g dξ ∧ dη =

4(
1 + |ξ|2 + |η|2

)2 dξ ∧ dη.

5 Bogomolnyi Equations

(a) Letting y1 = ξ and y2 = η, we can write the winding number N in terms of {yµ} simply

by pulling back the volume form (found in the previous question) by the spin field map,

n : x 7→ n̂(x).7

n∗Ω =
1

2!
Ωµν

∂yµ

∂xγ
∂yν

∂xδ
dxγ ∧ dxδ = Ωξη

(
∂ξ

∂x1

∂η

∂x2
− ∂η

∂x1

∂ξ

∂x2

)
dx1 ∧ dx2.

Hence, the winding number is

4πN =

∫
n∗Ω =

∫
4(

1 + |ξ|2 + |η|2
)2 [( ∂ξ

∂x1

)(
∂η

∂x2

)
−
(
∂η

∂x1

)(
∂ξ

∂x2

)]
dx1 ∧ dx2.

5I’ll drop the superscript labeling the metric tensors.
6See “Volume Form” subsection in 12.2 of the textbook.
7By a slight abuse of notation, I write Ω12 = Ωy1y2 = Ωξη.

7



To write the energy functional in the desired form, first note that

E[n̂] =
1

2

∫ (∣∣∇n1
∣∣2 +

∣∣∇n2
∣∣2 +

∣∣∇n3
∣∣2) dx1 ∧ dx2 =

1

2

∫
g

(R2)
αβ δγδ

∂nα

∂xγ
∂nβ

∂xδ
dx1 ∧ dx2,

where g
(R2)
αβ denotes the metric on R2 ' C. We then pull back the spin field and write the

remaining bits as the metric on S2 (from the previous problem),

g
(R2)
αβ δγδ

∂nα

∂xγ
∂nβ

∂xδ
= g

(R2)
αβ δγδ

(
∂nα

∂yσ
∂yσ

∂xγ

)(
∂nβ

∂yρ
∂yρ

∂xδ

)
=

(
g

(R2)
αβ

∂nα

∂yσ
∂nβ

∂yρ

)
︸ ︷︷ ︸

=g
(S2)
σρ

∂yσ

∂xγ
∂yρ

∂xδ
.

Plugging this into the energy functional yields the desired result,

E[n̂] =
1

2

∫
4(

1 + |ξ|2 + |η|2
)2
[(

∂ξ

∂x1

)2

+

(
∂ξ

∂x2

)2

+

(
∂η

∂x1

)2

+

(
∂η

∂x2

)2
]
dx1 ∧ dx2.

(b) Using ∂i ≡ ∂
∂xi

, note that

|(∂1 + i∂2)(ξ + iη)|2 = (∂1ξ)
2 + (∂2ξ)

2 + (∂1η)2 + (∂2η)2 − (∂1ξ)(∂2η) + (∂1η)(∂2ξ).

Hence,

E − 4πN =
1

2

∫
4(

1 + |ξ|2 + |η|2
)2 |(∂1 + i∂2)(ξ + iη)|2 dx1 ∧ dx2 ≥ 0

since the integrand is non-negative.

(c) If N > 0, then minimizing the energy immediately shows that |(∂1 + i∂2)(ξ + iη)|2 = 0 =⇒
(∂1 + i∂2)(ξ + iη) = 0. This ξ + iη is meromorphic in the entire complex plane and hence a

rational function.

(d) Since one is not expected to be familiar with complex analysis at this stage in the course, we

simply check that the proposed solution,

ξ + iη = λ
(z − a1) · · · (z − aN )

(z − b1) · · · (z − bN )
,

satisfies the condition. But this is easy since (∂1 + i∂2) = ∂z̄, and ξ + iη has been written

independently of z̄. Hence ∂z̄(ξ + iη) = 0, as desired.

(e) Now, for N < 0, the quantity E − 4πN is not much use to us; instead, consider the quantity

E + 4πN . Following analogous steps as those in parts (b) through (d), one finds

E + 4πN =
1

2

∫
4(

1 + |ξ|2 + |η|2
)2 |(∂1 − i∂2)(ξ + iη)|2 dx1 ∧ dx2 ≥ 0,
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so that the minimum energy corresponds to E = 4π |N |. Additionally, the function ξ + iη is

now anti-meromorphic in the entire complex plane; i.e.,

(∂1 − i∂2)(ξ + iη) = ∂z(ξ + iη) = 0,

and so we can write

ξ + iη = λ
(z̄ − a1) · · · (z̄ − aN )

(z̄ − b1) · · · (z̄ − bN )
,

as desired.
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