
Physics 509 Homework 5 Professor M. Stone

Spring 2021 University of Illinois

1 Lobachevski Space

There are several ways to do this problem. Various possible solutions are shown below.

Method 1: (Mike’s solution)

Hyperbolic t-substitution

P

Q
X

Z

R−R

If we take R = 1 the point P has coordinates

X = sinh s, Z = cosh s,

where, in the geometry of Lorentz boosts, s would be the rapidity . We can use the hyperbolic version

sinh s =
2t

1− t2
, cosh s =

1 + t2

1− t2

of the t-subsitution. This satisfies cosh2 s − sinh2 s = 1 as it should. The geometry of the figure,

followed by a line of algebra, shows that the tangent of the angle between the line QP and the Z

axis is
sinh s

1 + cosh s
= t.

Thus t has the geometric interpretation of being the radial distance in the X,Y plane from the

origin to point Q.
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The Minkowski arc length is

dX2 − dZ2 = (d sinh s)2 − (d cosh s)2 = (cosh2 s− sinh2 s)ds2 = ds2

so ds plays the role on the unit Minkowski hyperbola as dθ on the unit circle. From

sinh s =
2t

1− t2

we read off that

(cosh s) ds =
2(1 + t2)

(1− t2)2
dt

or

ds =
2

1− t2
dt.

Thus for radial displacements

ds2 =
4

1− t2
dt2 =

4

1−X2 + Y 2
dt2 =

4

1−X2 + Y 2
(dX2 + dY 2).

As dX2 + dY 2 = dt2 + t2dφ2 and for angular displacements ds2 = sinh2 s dφ2 the formula is correct

in that case also.

Method 2: One can also follow analogous steps to what was done in the “Stereographic Projection”

problem from the previous homework set. Using hyperbolic polar coordinates,

x(θ, φ) = R cosφ sinh θ

y(θ, φ) = R sinφ sinh θ

z(θ, φ) = R cosh θ,

the metric is g( , ) = dφ⊗ dφ+ sinh2 θ dθ⊗ dθ. This can then be mapped to the Poincaré disk model

via the transformation ζ = X + iY = eiφ tanh(θ/2). Following identical steps to the computation

performed in the previous homework (i.e., compute the Jacobian, then use it to transform g, which

is just a doubly covariant tensor), one finds the new induced metric to be

4R4(
R2 −X2 − Y 2

)2 (dX ⊗ dX + dY ⊗ dY ) .

Note that here X and Y are coordinates on the Poincaré disk (in the previous problem set, the

analogous variables were named ξ and η) whereas x, y, and z are coordinates on the upper half

hyperboloid.

Method 3: Another “brute force” procedure one might follow is to start with the stereographic
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projection,

X(x, y) = R

(
2Rx

R2 + x2 + y2

)
Y (x, y) = R

(
2Ry

R2 + x2 + y2

)
Z(x, y) = R

(
−R2 + x2 + y2

R2 + x2 + y2

)
,

where {X,Y, Z} are the coordinates on S2 and {x, y} are the coordinates in the plane, and then

plug in an imaginary radius (i.e., take R 7→ iR in the above mapping) as suggested in the problem.

The induced metric is just that of the Poincaré disk model. The computation can be performed

easily in Mathematica.

2 Flywheel and Rolling Ball

(a) Here we work in the body-frame coordinates, with the (principle) Z axis along the direction

of the axle. In these coordinates, the inertia tensor is diagonal and, as a result of the

symmetry about the axle, IXX = IY Y . Since there are no external torques, we have that

LZ = IZZωZ = IZZ(ψ̇ + φ̇ cos θ) is a constant of motion.1 When the axle has returned to rest

in the initial position, we have LZ = 0; hence, ψ̇ = −φ̇ cos θ at all points on the curve γ = ∂Ω.

Integrating this over the time required to make a closed loop, we find

∆ψ = −
∫ τ

0
φ̇(t) cos θ(t) dt

1One can also see this via the Lagrangian and the Euler-Lagrange equations.
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= −
∫
∂Ω

cos θ(φ) dφ (parametrize θ in terms of φ)

= −
∫

Ω
d(cos θ dφ) (Stokes’ Theorem)

=

∫
Ω

sin θ dθ ∧ dφ

= Area(Ω).

Notice that if we reverse the orientation of the path, then the enclosed area becomes 4π −
Area(Ω). Since reversing orientation changes the sign, we have that 4π−Area(Ω) = −Area(Ω),

which shows the area is only defined modulo 4π.

(b) Since the point in contact with the table describes a closed path on the ball, we instead

use space-fixed coordinates2 so that ωZ = φ̇ + ψ̇ cos θ, and the no slip condition implies

φ̇+ ψ̇ cos θ = 0.3 Analogous steps to those of part (a) show that ∆φ = Area(Ω).

3 Hopf Invariant

Before delving into calculations, it is worth summarizing some of the notation and identities we

make use of throughout the solution. Given in the problem, we have

Dv

Dt
≡ ∂v

∂t
+ (v ·∇)v = −∇P (Euler’s equation) (1)

∇ · v = 0 (incompressibility condition). (2)

We also use the following vector calculus identities, which are easily proved by writing terms out in

index notation.4

∇ · (ψA) = (∇ψ) ·A + ψ(∇ ·A) (3)

∇ (A ·B) = ∇A(A ·B) +∇B(A ·B) (4)

A× (∇×B) = ∇B(A ·B)− (A ·∇)B (5)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B ·∇)A− (A ·∇)B, (6)

where I’ve used Feynman’s subscript notation, ∇A(A ·B) ≡ Bk(∂jAk)êj , to denote the gradient

acts only on the vector in the subscript.

(a) (i) First note in equation (5), when A = B = v, the ∇B(A ·B) can be written as ∇
(

1
2v

2
)
.

We can therefore write the curl of the convective derivative, ∇× Dv
Dt = D

Dt(∇× v) = Dω
Dt

2Note that the expression for the angular velocity vector differs in space-fixed and body-fixed coordinates (see here).
3This is the coordinate system employed in question 3 of homework 2 where we calculated the vector fields

corresponding to the motions of a rolling ball.
4Wikipedia includes a comprehensive list, https://en.wikipedia.org/wiki/Vector calculus identities.
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as

Dω

Dt
= ∇×

[
∂v

∂t
+ (v ·∇)v

]
=

∂

∂t
(∇× v) +∇× [(v ·∇)v]

=
∂ω

∂t
+∇×

[
∇
(

1

2
v2

)
− v × ω

]

=
∂ω

∂t
+∇×

��
�
��

��*
= 0[

∇
(

1

2
v2

)]
−∇× (v × ω) (curl of gradient vanishes).

Now expanding the remaining term using (6), we find

−∇× (v × ω) = −v(∇ · ω)︸ ︷︷ ︸
∇·(∇×v)=0

+

=0, incompressible︷ ︸︸ ︷
ω(∇ · v)−(ω ·∇)v + (v ·∇)ω.

Plugging this in, one finds

Dω

Dt
=
∂ω

∂t
+ (v ·∇)ω − (ω ·∇)v =���

���
�:= 0

∇× (−∇P ),

which re-arranges to
Dω

Dt
=
∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v, (7)

as desired.

(ii) Using the product rule and plugging in equations (1) and (7) we find

D

Dt
(v · ω) =

[
Dv

Dt

]
· ω + v ·

[
Dω

Dt

]
= [−∇P ] · ω + v · [(ω ·∇)v]

= ω ·
[
−∇P +∇

(
1

2
v2

)]
(v · [(ω ·∇)v] = ω ·∇

(
1
2v

2
)
)

=∇ ·
[
ω

(
1

2
v2 − P

)]
(equation (3), ∇ · ω = 0).

(iii) For a volume Ω(t) that is co-moving with a fluid (and is allowed to change shape), we

need some kind of generalization of Leibniz’s integral rule. In the three dimensional case,5

the appropriate generalization is known as the Reynolds Transport Theorem, which for

5Generalizations to higher dimensions can be clearly stated in the language of differential forms. See later comments
for problem 4.
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incompressible fluids takes the form

d

dt

∫
Ω(t)

f(x, t) dV =

∫
Ω(t)

(
∂

∂t
+ v ·∇

)
f(x, t) dV. (8)

This is the exact statement we are asked to check in the problem. To prove this, consider

a parametrized family of diffeomorphisms, ϕt : Ω0 → Ω(t) such that ϕt : u 7→ x, which

maps the region Ω0 ≡ Ω(t = 0) to the corresponding region after it has been carried along

the vector field v for some time t. Pulling back by this function, we can write∫
Ω(t)

f dx1dx2dx3︸ ︷︷ ︸
(=dV )

=

∫
Ω0

ϕ∗t (f dV ) =

∫
Ω0

f(x(u), t) |J | du1du2du3︸ ︷︷ ︸
(=dV0)

,

where |J | ≡
∣∣det

(
∂x
∂u

)∣∣.6 This essentially moves the time-dependence of the region of

integration into the integrand. We can then use Leibniz’s rule to write

d

dt

∫
Ω0

f |J | dV0 =

∫
Ω0

[(
∂

∂t
+
∂u

∂t
·∇u

)
f |J |+ f

(
∂

∂t
|J |
)]

dV0.

Note that v = ∂u
∂t and ∂

∂t |J | = 0 since

d

dt
Vol(Ω(t)) =

d

dt

∫
Ω(t)

dV =
d

dt

∫
Ω0

|J | dV0 =

∫
Ω0

(
d

dt
|J |
)
dV0,

so that the incompressibility condition d
dt Vol(Ω(t)) = 0 implies that d

dt |J | = 0. After

changing back to the original variables and placing the time-dependence back into the

integration region, one finds

d

dt

∫
Ω(t)

f(x, t) dV =

∫
Ω(t)

(
∂

∂t
+ v ·∇

)
f(x, t) dV =

∫
Ω(t)

Df

Dt
dV,

as desired.

(iv) Utilizing the results of the previous parts,

d

dt
H =

d

dt

∫
v · ω dV

=

∫
D

Dt
(v · ω) dV (part (iii))

=

∫
∇ ·

{
ω

(
1

2
− P

)}
dV (part (ii))

=

∫ {
ω

(
1

2
− P

)}
· dS (Gauss’s law)

6Notice that here we need the absolute values on the Jacobian because we are considering the unoriented integral.
In the final question, we will perform a similar calculation in the language of differential forms were the integrals are
oriented. There the Jacobian factor is included with no absolute values.
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= 0 (||ω|| → 0 at spacial infinity).

(b) (i) Since the electromotive force must vanish everywhere,

E + v ×B = −∂A
∂t
−∇φ+ v × (∇×A) = 0 =⇒ ∂A

∂t
= v × (∇×A)−∇φ.

Utilizing the previous result, we have

E = −∂A
∂t
−∇φ = − [v × (∇×A)−∇φ]−∇φ = −×(∇×A) = −v ×B.

Plugging this into Faraday’s law, ∇×E = −∂B
∂t , yields ∂B

∂t =∇× (v ×B), as desired.

(ii) In analogy with the calculation in (a)(ii), we use the product rule to write D
Dt(A ·B) =[

D
DtA

]
·B + A ·

[
D
DtB

]
. Using the identities in the previous part, each of the convective

derivatives can be written as

DA

Dt
=
∂A

∂t
+ (v ·∇)A

= v × (∇×A)−∇φ+ (v ·∇)A (previous part)

= ∇A (A · v)−∇φ (equation (5))

and

DB

Dt
=
∂B

∂t
+ (v ·∇)B

=∇× (v ×B) + (v ·∇)B (previous part)

= v(∇ ·B)︸ ︷︷ ︸
∇·B=0

−B(∇ · v)︸ ︷︷ ︸
=0, incompressible

+(B ·∇)v (equation (6)).

Using these one finds

D

Dt
[A ·B] = [∇A(A · v)−∇φ] ·B + A · [(B ·∇)v]

= [∇A(A · v)−∇φ] ·B + · [∇v(A · v)] ·B

= B · [∇(A · v)−∇φ]

=∇ · [B(A · v − φ)] (using (3) and ∇ ·B = 0),

as desired.

(iii) This is analogous to the calculation in the preceding part. Putting all of the pieces

together one finds

d

dt
W =

d

dt

∫
Ω

(A ·B) dV
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=

∫
Ω

D

Dt
(A ·B) dV (by (a)(ii))

=

∫
Ω
∇ · {B (A · v − φ)} dV (by (b)(ii))

=

∫
∂Ω
{B(A · v − φ} · dS (Gauss’s law).

If B vanishes at spatial infinity, then d
dtW = 0, which shows that W is a constant of

motion.

4 Faraday’s Law

(a) Following analogous steps to the procedure done in 3(a)(iii) (but here written explicitly in the

language of differential forms), we pull back the time-varying region of integration to one that

is fixed, Ω0 ≡ Ω(τ = 0), via a diffeomorphism ϕt.

d

dτ

∫
Ω(τ)

F =
d

dτ

∫
Ω(τ)

(
1

2
Fµν(x) dxµ ∧ dxν

)
=

d

dτ

∫
ϕ−1
τ (Ω(τ))

ϕ∗τ

(
1

2
Fµν(x) dxµ ∧ dxν

)
=

d

dτ

∫
Ω0

1

2
Fµν(x(ξ))

∂xµ

∂ξσ
∂xν

∂ξρ
dξσ ∧ dξρ

=
1

2

∫
Ω0

d

dτ

(
Fµν(x(ξ))

∂xµ

∂ξσ
∂xν

∂ξρ

)
dξσ ∧ dξρ

=
1

2

∫
Ω0

[(
d

dτ
Fµν(x(ξ))

)
∂xµ

∂ξσ
∂xν

∂ξρ

+ Fµν(x(ξ))

(
d

dτ

∂xµ

∂ξσ

)
∂xν

∂ξρ
+ Fµν(x(ξ))

∂xµ

∂ξσ

(
d

dτ

∂xν

∂ξρ

)]
dξσ ∧ dξρ.

Notice however that
∂

∂τ

∂xµ

∂ξσ
=

∂

∂ξσ

(
∂xµ

∂τ

)
︸ ︷︷ ︸

=V µ

=
∂xλ

∂ξσ
∂

∂xλ
V µ,

and analogously for the other terms. We can therefore write

d

dτ

∫
Ω(τ)

F =
1

2

∫
Ω0

[
V λ∂Fµν

∂xλ

(
∂xµ

∂ξσ
∂xν

∂ξρ

)
+ Fµν

∂V µ

∂xλ

(
∂xλ

∂ξσ
∂xν

∂ξρ

)
+ Fµν

∂V ν

∂xλ

(
∂xλ

∂ξρ
∂xµ

∂ξσ

)]
dξσ ∧ dξρ

=
1

2

∫
Ω(τ)

[
V λ∂Fµν

∂xλ
+ Fλν

∂V λ

∂xµ
+ Fµλ

∂V λ

∂xν

]
∂xµ

∂ξσ
∂xν

∂ξρ
dξσ ∧ dξρ
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=
1

2

∫
Ω0

[
V λ∂Fµν

∂xλ
+ Fλν

∂V λ

∂xµ
+ Fµλ

∂V λ

∂xν

]
︸ ︷︷ ︸

=(LV F )µν

dxµ ∧ dxν .

In the second equality we have simply re-labeled indices; in the last, the integrand has been

written back in terms of the original coordinates with a time-varying region of integration.

This shows that d
dτ

∫
Ω(τ) F =

∫
Ω(τ) LV F , as desired.7

(b) If τ is the proper time along the world-line of each element, then

dV µ

dτ
=
dt

dτ

dV µ

dt
=

1√
1− v2

(1,v)

and

f = −ιV F = −
(

1

2
Fµν dx

µ ∧ dxν
)

(V σ ∂

∂xσ
, · )

= −1

2
Fµν (V σδµσ dx

ν − V σδνσ dx
µ) = FµνV

ν dxµ,

which is exactly the definition Lorentz-force 4-vector.

7What we have done here is essentially derive Leibniz’s rule for 2-forms. Analogous results, which follow the same
line of reasoning, can be derived for general p-forms. See Flanders, Harley “Differentiation Under the Integral Sign”,
for a proof of the general statement.
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