Physics 509 Homework 5

Professor M. Stone
Spring 2021

1 Lobachevski Space

There are several ways to do this problem. Various possible solutions are shown below.
Method 1: (Mike's solution)

If we take $R=1$ the point P has coordinates

$$
X=\sinh s, \quad Z=\cosh s
$$

where, in the geometry of Lorentz boosts, s would be the rapidity. We can use the hyperbolic version

$$
\sinh s=\frac{2 t}{1-t^{2}}, \quad \cosh s=\frac{1+t^{2}}{1-t^{2}}
$$

of the t-subsitution. This satisfies $\cosh ^{2} s-\sinh ^{2} s=1$ as it should. The geometry of the figure, followed by a line of algebra, shows that the tangent of the angle between the line QP and the Z axis is

$$
\frac{\sinh s}{1+\cosh s}=t
$$

Thus t has the geometric interpretation of being the radial distance in the X, Y plane from the origin to point Q .

The Minkowski arc length is

$$
d X^{2}-d Z^{2}=(d \sinh s)^{2}-(d \cosh s)^{2}=\left(\cosh ^{2} s-\sinh ^{2} s\right) d s^{2}=d s^{2}
$$

so $d s$ plays the role on the unit Minkowski hyperbola as $d \theta$ on the unit circle. From

$$
\sinh s=\frac{2 t}{1-t^{2}}
$$

we read off that

$$
(\cosh s) d s=\frac{2\left(1+t^{2}\right)}{\left(1-t^{2}\right)^{2}} d t
$$

or

$$
d s=\frac{2}{1-t^{2}} d t
$$

Thus for radial displacements

$$
d s^{2}=\frac{4}{1-t^{2}} d t^{2}=\frac{4}{1-X^{2}+Y^{2}} d t^{2}=\frac{4}{1-X^{2}+Y^{2}}\left(d X^{2}+d Y^{2}\right)
$$

As $d X^{2}+d Y^{2}=d t^{2}+t^{2} d \phi^{2}$ and for angular displacements $d s^{2}=\sinh ^{2} s d \phi^{2}$ the formula is correct in that case also.

Method 2: One can also follow analogous steps to what was done in the "Stereographic Projection" problem from the previous homework set. Using hyperbolic polar coordinates,

$$
\begin{aligned}
x(\theta, \phi) & =R \cos \phi \sinh \theta \\
y(\theta, \phi) & =R \sin \phi \sinh \theta \\
z(\theta, \phi) & =R \cosh \theta
\end{aligned}
$$

the metric is $g()=,d \phi \otimes d \phi+\sinh ^{2} \theta d \theta \otimes d \theta$. This can then be mapped to the Poincaré disk model via the transformation $\zeta=X+i Y=e^{i \phi} \tanh (\theta / 2)$. Following identical steps to the computation performed in the previous homework (i.e., compute the Jacobian, then use it to transform g, which is just a doubly covariant tensor), one finds the new induced metric to be

$$
\frac{4 R^{4}}{\left(R^{2}-X^{2}-Y^{2}\right)^{2}}(d X \otimes d X+d Y \otimes d Y)
$$

Note that here X and Y are coordinates on the Poincaré disk (in the previous problem set, the analogous variables were named ξ and η) whereas x, y, and z are coordinates on the upper half hyperboloid.

Method 3: Another "brute force" procedure one might follow is to start with the stereographic
projection,

$$
\begin{aligned}
& X(x, y)=R\left(\frac{2 R x}{R^{2}+x^{2}+y^{2}}\right) \\
& Y(x, y)=R\left(\frac{2 R y}{R^{2}+x^{2}+y^{2}}\right) \\
& Z(x, y)=R\left(\frac{-R^{2}+x^{2}+y^{2}}{R^{2}+x^{2}+y^{2}}\right),
\end{aligned}
$$

where $\{X, Y, Z\}$ are the coordinates on S^{2} and $\{x, y\}$ are the coordinates in the plane, and then plug in an imaginary radius (i.e., take $R \mapsto i R$ in the above mapping) as suggested in the problem. The induced metric is just that of the Poincaré disk model. The computation can be performed easily in Mathematica.

2 Flywheel and Rolling Ball

(a) Here we work in the body-frame coordinates, with the (principle) Z axis along the direction of the axle. In these coordinates, the inertia tensor is diagonal and, as a result of the symmetry about the axle, $I_{X X}=I_{Y Y}$. Since there are no external torques, we have that $L_{Z}=I_{Z Z} \omega_{Z}=I_{Z Z}(\dot{\psi}+\dot{\phi} \cos \theta)$ is a constant of motion ${ }^{1}$ When the axle has returned to rest in the initial position, we have $L_{Z}=0$; hence, $\dot{\psi}=-\dot{\phi} \cos \theta$ at all points on the curve $\gamma=\partial \Omega$. Integrating this over the time required to make a closed loop, we find

$$
\Delta \psi=-\int_{0}^{\tau} \dot{\phi}(t) \cos \theta(t) d t
$$

[^0]\[

$$
\begin{array}{ll}
=-\int_{\partial \Omega} \cos \theta(\phi) d \phi & \\
=-\int_{\Omega} d(\cos \theta d \phi) & \\
=\int_{\Omega} \sin \theta d \theta \wedge d \phi & \\
=\operatorname{Area}(\Omega) &
\end{array}
$$
\]

Notice that if we reverse the orientation of the path, then the enclosed area becomes $4 \pi-$ $\operatorname{Area}(\Omega)$. Since reversing orientation changes the sign, we have that $4 \pi-\operatorname{Area}(\Omega)=-\operatorname{Area}(\Omega)$, which shows the area is only defined modulo 4π.
(b) Since the point in contact with the table describes a closed path on the ball, we instead use space-fixed coordinates \mathbb{D}^{2} so that $\omega_{Z}=\dot{\phi}+\dot{\psi} \cos \theta$, and the no slip condition implies $\dot{\phi}+\dot{\psi} \cos \theta=0]^{3}$ Analogous steps to those of part (a) show that $\Delta \phi=\operatorname{Area}(\Omega)$.

3 Hopf Invariant

Before delving into calculations, it is worth summarizing some of the notation and identities we make use of throughout the solution. Given in the problem, we have

$$
\begin{align*}
\frac{D \mathbf{v}}{D t} & \equiv \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}=-\nabla P & & \text { (Euler's equation) } \tag{1}\\
\boldsymbol{\nabla} \cdot \mathbf{v} & =0 & & \text { (incompressibility condition). } \tag{2}
\end{align*}
$$

We also use the following vector calculus identities, which are easily proved by writing terms out in index notation 4

$$
\begin{align*}
\boldsymbol{\nabla} \cdot(\psi \mathbf{A}) & =(\nabla \psi) \cdot \mathbf{A}+\psi(\boldsymbol{\nabla} \cdot \mathbf{A}) \tag{3}\\
\nabla(\mathbf{A} \cdot \mathbf{B}) & =\nabla_{\mathbf{A}}(\mathbf{A} \cdot \mathbf{B})+\nabla_{\mathbf{B}}(\mathbf{A} \cdot \mathbf{B}) \tag{4}\\
\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B}) & =\nabla_{\mathbf{B}}(\mathbf{A} \cdot \mathbf{B})-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} \tag{5}\\
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B}) & =\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}, \tag{6}
\end{align*}
$$

where I've used Feynman's subscript notation, $\nabla_{\mathbf{A}}(\mathbf{A} \cdot \mathbf{B}) \equiv B_{k}\left(\partial_{j} A_{k}\right) \hat{\mathbf{e}}_{j}$, to denote the gradient acts only on the vector in the subscript.
(a) (i) First note in equation (5), when $\mathbf{A}=\mathbf{B}=\mathbf{v}$, the $\nabla_{\mathbf{B}}(\mathbf{A} \cdot \mathbf{B})$ can be written as $\nabla\left(\frac{1}{2} \mathbf{v}^{2}\right)$. We can therefore write the curl of the convective derivative, $\nabla \times \frac{D \mathbf{v}}{D t}=\frac{D}{D t}(\nabla \times \mathbf{v})=\frac{D \omega}{D t}$

[^1]as
\[

$$
\begin{aligned}
\frac{D \boldsymbol{\omega}}{D t} & =\nabla \times\left[\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}\right] \\
& =\frac{\partial}{\partial t}(\boldsymbol{\nabla} \times \mathbf{v})+\nabla \times[(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}] \\
& =\frac{\partial \boldsymbol{\omega}}{\partial t}+\boldsymbol{\nabla} \times\left[\nabla\left(\frac{1}{2} \mathbf{v}^{2}\right)-\mathbf{v} \times \boldsymbol{\omega}\right] \\
& =\frac{\partial \boldsymbol{\omega}}{\partial t}+\boldsymbol{\nabla} \times\left[\nabla\left(\frac{1}{2} \mathbf{v}^{2}\right)\right]-\boldsymbol{\nabla} \times(\mathbf{v} \times \boldsymbol{\omega}) \quad \text { (curl of gradient vanishes). }
\end{aligned}
$$
\]

Now expanding the remaining term using (6), we find

$$
-\boldsymbol{\nabla} \times(\mathbf{v} \times \boldsymbol{\omega})=\underbrace{-\mathbf{v}(\boldsymbol{\nabla} \cdot \boldsymbol{\omega})}_{\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{v})=0}+\overbrace{\boldsymbol{\omega}(\nabla \cdot \mathbf{v})}^{=0, \text { incompressible }}-(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{v}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \boldsymbol{\omega}
$$

Plugging this in, one finds

$$
\frac{D \boldsymbol{\omega}}{D t}=\frac{\partial \boldsymbol{\omega}}{\partial t}+(\mathbf{v} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{v}=\boldsymbol{\nabla} \times(-\nabla P), \quad 0
$$

which re-arranges to

$$
\begin{equation*}
\frac{D \boldsymbol{\omega}}{D t}=\frac{\partial \boldsymbol{\omega}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \boldsymbol{\omega}=(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{v} \tag{7}
\end{equation*}
$$

as desired.
(ii) Using the product rule and plugging in equations (1) and (7) we find

$$
\begin{aligned}
\frac{D}{D t}(\mathbf{v} \cdot \boldsymbol{\omega}) & =\left[\frac{D \mathbf{v}}{D t}\right] \cdot \boldsymbol{\omega}+\mathbf{v} \cdot\left[\frac{D \boldsymbol{\omega}}{D t}\right] & & \\
& =[-\nabla P] \cdot \boldsymbol{\omega}+\mathbf{v} \cdot[(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{v}] & & \\
& =\boldsymbol{\omega} \cdot\left[-\nabla P+\nabla\left(\frac{1}{2} \mathbf{v}^{2}\right)\right] & & \left(\mathbf{v} \cdot[(\boldsymbol{\omega} \cdot \boldsymbol{\nabla}) \mathbf{v}]=\boldsymbol{\omega} \cdot \boldsymbol{\nabla}\left(\frac{1}{2} \mathbf{v}^{2}\right)\right) \\
& =\boldsymbol{\nabla} \cdot\left[\boldsymbol{\omega}\left(\frac{1}{2} \mathbf{v}^{2}-P\right)\right] & & \text { (equation }(3), \boldsymbol{\nabla} \cdot \boldsymbol{\omega}=0)
\end{aligned}
$$

(iii) For a volume $\Omega(t)$ that is co-moving with a fluid (and is allowed to change shape), we need some kind of generalization of Leibniz's integral rule. In the three dimensional case 5 the appropriate generalization is known as the Reynolds Transport Theorem, which for

[^2]incompressible fluids takes the form
\[

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega(t)} f(\mathbf{x}, t) d V=\int_{\Omega(t)}\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla\right) f(\mathbf{x}, t) d V \tag{8}
\end{equation*}
$$

\]

This is the exact statement we are asked to check in the problem. To prove this, consider a parametrized family of diffeomorphisms, $\varphi_{t}: \Omega_{0} \rightarrow \Omega(t)$ such that $\varphi_{t}: \mathbf{u} \mapsto \mathbf{x}$, which maps the region $\Omega_{0} \equiv \Omega(t=0)$ to the corresponding region after it has been carried along the vector field \mathbf{v} for some time t. Pulling back by this function, we can write

$$
\int_{\Omega(t)} f \underbrace{d x^{1} d x^{2} d x^{3}}_{(=d V)}=\int_{\Omega_{0}} \varphi_{t}^{*}(f d V)=\int_{\Omega_{0}} f(\mathbf{x}(\mathbf{u}), t)|J| \underbrace{d u^{1} d u^{2} d u^{3}}_{\left(=d V_{0}\right)}
$$

where $\left.|J| \equiv\left|\operatorname{det}\left(\frac{\partial \mathbf{x}}{\partial \mathbf{u}}\right)\right|\right|^{6}$ This essentially moves the time-dependence of the region of integration into the integrand. We can then use Leibniz's rule to write

$$
\frac{d}{d t} \int_{\Omega_{0}} f|J| d V_{0}=\int_{\Omega_{0}}\left[\left(\frac{\partial}{\partial t}+\frac{\partial \mathbf{u}}{\partial t} \cdot \nabla_{\mathbf{u}}\right) f|J|+f\left(\frac{\partial}{\partial t}|J|\right)\right] d V_{0}
$$

Note that $\mathbf{v}=\frac{\partial \mathbf{u}}{\partial t}$ and $\frac{\partial}{\partial t}|J|=0$ since

$$
\frac{d}{d t} \operatorname{Vol}(\Omega(t))=\frac{d}{d t} \int_{\Omega(t)} d V=\frac{d}{d t} \int_{\Omega_{0}}|J| d V_{0}=\int_{\Omega_{0}}\left(\frac{d}{d t}|J|\right) d V_{0}
$$

so that the incompressibility condition $\frac{d}{d t} \operatorname{Vol}(\Omega(t))=0$ implies that $\frac{d}{d t}|J|=0$. After changing back to the original variables and placing the time-dependence back into the integration region, one finds

$$
\frac{d}{d t} \int_{\Omega(t)} f(\mathbf{x}, t) d V=\int_{\Omega(t)}\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \boldsymbol{\nabla}\right) f(\mathbf{x}, t) d V=\int_{\Omega(t)} \frac{D f}{D t} d V
$$

as desired.
(iv) Utilizing the results of the previous parts,

$$
\begin{align*}
\frac{d}{d t} H & =\frac{d}{d t} \int \mathbf{v} \cdot \boldsymbol{\omega} d V \\
& =\int \frac{D}{D t}(\mathbf{v} \cdot \boldsymbol{\omega}) d V \\
& =\int \boldsymbol{\nabla} \cdot\left\{\boldsymbol{\omega}\left(\frac{1}{2}-P\right)\right\} d V \\
& =\int\left\{\boldsymbol{\omega}\left(\frac{1}{2}-P\right)\right\} \cdot d \mathbf{S} \tag{Gauss'slaw}
\end{align*}
$$

[^3]$$
=0
$$
$$
(\|\boldsymbol{\omega}\| \rightarrow 0 \text { at spacial infinity })
$$
(b) (i) Since the electromotive force must vanish everywhere,
$$
\mathbf{E}+\mathbf{v} \times \mathbf{B}=-\frac{\partial \mathbf{A}}{\partial t}-\nabla \phi+\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{A})=\mathbf{0} \Longrightarrow \frac{\partial \mathbf{A}}{\partial t}=\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{A})-\nabla \phi
$$

Utilizing the previous result, we have

$$
\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}-\nabla \phi=-[\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{A})-\nabla \phi]-\nabla \phi=-\times(\boldsymbol{\nabla} \times \mathbf{A})=-\mathbf{v} \times \mathbf{B}
$$

Plugging this into Faraday's law, $\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$, yields $\frac{\partial \mathbf{B}}{\partial t}=\boldsymbol{\nabla} \times(\mathbf{v} \times \mathbf{B})$, as desired.
(ii) In analogy with the calculation in (a)(ii), we use the product rule to write $\frac{D}{D t}(\mathbf{A} \cdot \mathbf{B})=$ $\left[\frac{D}{D t} \mathbf{A}\right] \cdot \mathbf{B}+\mathbf{A} \cdot\left[\frac{D}{D t} \mathbf{B}\right]$. Using the identities in the previous part, each of the convective derivatives can be written as

$$
\begin{array}{rlrl}
\frac{D \mathbf{A}}{D t} & =\frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{A} \\
& =\mathbf{v} \times(\boldsymbol{\nabla} \times \mathbf{A})-\nabla \phi+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{A} \\
& =\nabla_{\mathbf{A}}(\mathbf{A} \cdot \mathbf{v})-\nabla \phi & & \text { (previous part) } \\
\text { (equation (5)) }
\end{array}
$$

and

$$
\begin{array}{rlr}
\frac{D \mathbf{B}}{D t} & =\frac{\partial \mathbf{B}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{B} \\
& =\boldsymbol{\nabla} \times(\mathbf{v} \times \mathbf{B})+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{B} \\
& =\underbrace{\mathbf{v}(\boldsymbol{\nabla} \cdot \mathbf{B})}_{\boldsymbol{\nabla} \cdot \mathbf{B}=0}-\underbrace{\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{v})}_{=0, \text { incompressible }}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{v}
\end{array}
$$

Using these one finds

$$
\begin{aligned}
\frac{D}{D t}[\mathbf{A} \cdot \mathbf{B}] & =\left[\nabla_{\mathbf{A}}(\mathbf{A} \cdot \mathbf{v})-\nabla \phi\right] \cdot \mathbf{B}+\mathbf{A} \cdot[(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{v}] \\
& =\left[\nabla_{\mathbf{A}}(\mathbf{A} \cdot \mathbf{v})-\nabla \phi\right] \cdot \mathbf{B}+\cdot\left[\nabla_{\mathbf{v}}(\mathbf{A} \cdot \mathbf{v})\right] \cdot \mathbf{B} \\
& =\mathbf{B} \cdot[\nabla(\mathbf{A} \cdot \mathbf{v})-\nabla \phi]
\end{aligned}
$$

$$
=\boldsymbol{\nabla} \cdot[\mathbf{B}(\mathbf{A} \cdot \mathbf{v}-\phi)] \quad \text { (using (3) and } \boldsymbol{\nabla} \cdot \mathbf{B}=0)
$$

as desired.
(iii) This is analogous to the calculation in the preceding part. Putting all of the pieces together one finds

$$
\frac{d}{d t} W=\frac{d}{d t} \int_{\Omega}(\mathbf{A} \cdot \mathbf{B}) d V
$$

$$
\begin{align*}
& =\int_{\Omega} \frac{D}{D t}(\mathbf{A} \cdot \mathbf{B}) d V \tag{a}\\
& =\int_{\Omega} \boldsymbol{\nabla} \cdot\{\mathbf{B}(\mathbf{A} \cdot \mathbf{v}-\phi)\} d V \tag{b}\\
& =\int_{\partial \Omega}\{\mathbf{B}(\mathbf{A} \cdot \mathbf{v}-\phi\} \cdot d \mathbf{S}
\end{align*}
$$

If \mathbf{B} vanishes at spatial infinity, then $\frac{d}{d t} W=0$, which shows that W is a constant of motion.

4 Faraday's Law

(a) Following analogous steps to the procedure done in 3(a)(iii) (but here written explicitly in the language of differential forms), we pull back the time-varying region of integration to one that is fixed, $\Omega_{0} \equiv \Omega(\tau=0)$, via a diffeomorphism φ_{t}.

$$
\begin{aligned}
\frac{d}{d \tau} \int_{\Omega(\tau)} F= & \frac{d}{d \tau} \int_{\Omega(\tau)}\left(\frac{1}{2} F_{\mu \nu}(x) d x^{\mu} \wedge d x^{\nu}\right) \\
= & \frac{d}{d \tau} \int_{\varphi_{\tau}^{-1}(\Omega(\tau))} \varphi_{\tau}^{*}\left(\frac{1}{2} F_{\mu \nu}(x) d x^{\mu} \wedge d x^{\nu}\right) \\
= & \frac{d}{d \tau} \int_{\Omega_{0}} \frac{1}{2} F_{\mu \nu}(x(\xi)) \frac{\partial x^{\mu}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}} d \xi^{\sigma} \wedge d \xi^{\rho} \\
= & \frac{1}{2} \int_{\Omega_{0}} \frac{d}{d \tau}\left(F_{\mu \nu}(x(\xi)) \frac{\partial x^{\mu}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}}\right) d \xi^{\sigma} \wedge d \xi^{\rho} \\
= & \frac{1}{2} \int_{\Omega_{0}}\left[\left(\frac{d}{d \tau} F_{\mu \nu}(x(\xi))\right) \frac{\partial x^{\mu}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}}\right. \\
& \left.\quad+F_{\mu \nu}(x(\xi))\left(\frac{d}{d \tau} \frac{\partial x^{\mu}}{\partial \xi^{\sigma}}\right) \frac{\partial x^{\nu}}{\partial \xi^{\rho}}+F_{\mu \nu}(x(\xi)) \frac{\partial x^{\mu}}{\partial \xi^{\sigma}}\left(\frac{d}{d \tau} \frac{\partial x^{\nu}}{\partial \xi^{\rho}}\right)\right] d \xi^{\sigma} \wedge d \xi^{\rho} .
\end{aligned}
$$

Notice however that

$$
\frac{\partial}{\partial \tau} \frac{\partial x^{\mu}}{\partial \xi^{\sigma}}=\frac{\partial}{\partial \xi^{\sigma}} \underbrace{\left(\frac{\partial x^{\mu}}{\partial \tau}\right)}_{=V^{\mu}}=\frac{\partial x^{\lambda}}{\partial \xi^{\sigma}} \frac{\partial}{\partial x^{\lambda}} V^{\mu},
$$

and analogously for the other terms. We can therefore write

$$
\begin{aligned}
\frac{d}{d \tau} \int_{\Omega(\tau)} F= & \frac{1}{2} \\
\int_{\Omega_{0}} & {\left[V^{\lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}\left(\frac{\partial x^{\mu}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}}\right)\right.} \\
& \left.+F_{\mu \nu} \frac{\partial V^{\mu}}{\partial x^{\lambda}}\left(\frac{\partial x^{\lambda}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}}\right)+F_{\mu \nu} \frac{\partial V^{\nu}}{\partial x^{\lambda}}\left(\frac{\partial x^{\lambda}}{\partial \xi^{\rho}} \frac{\partial x^{\mu}}{\partial \xi^{\sigma}}\right)\right] d \xi^{\sigma} \wedge d \xi^{\rho} \\
=\frac{1}{2} & \int_{\Omega(\tau)}\left[V^{\lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}+F_{\lambda \nu} \frac{\partial V^{\lambda}}{\partial x^{\mu}}+F_{\mu \lambda} \frac{\partial V^{\lambda}}{\partial x^{\nu}}\right] \frac{\partial x^{\mu}}{\partial \xi^{\sigma}} \frac{\partial x^{\nu}}{\partial \xi^{\rho}} d \xi^{\sigma} \wedge d \xi^{\rho}
\end{aligned}
$$

$$
=\frac{1}{2} \int_{\Omega_{0}} \underbrace{\left[V^{\lambda} \frac{\partial F_{\mu \nu}}{\partial x^{\lambda}}+F_{\lambda \nu} \frac{\partial V^{\lambda}}{\partial x^{\mu}}+F_{\mu \lambda} \frac{\partial V^{\lambda}}{\partial x^{\nu}}\right]}_{=\left(\mathcal{L}_{V} F\right)_{\mu \nu}} d x^{\mu} \wedge d x^{\nu}
$$

In the second equality we have simply re-labeled indices; in the last, the integrand has been written back in terms of the original coordinates with a time-varying region of integration. This shows that $\frac{d}{d \tau} \int_{\Omega(\tau)} F=\int_{\Omega(\tau)} \mathcal{L}_{V} F$, as desired. ${ }^{7}$
(b) If τ is the proper time along the world-line of each element, then

$$
\frac{d V^{\mu}}{d \tau}=\frac{d t}{d \tau} \frac{d V^{\mu}}{d t}=\frac{1}{\sqrt{1-\mathbf{v}^{2}}}(1, \mathbf{v})
$$

and

$$
\begin{aligned}
f=-\iota_{V} F=-\left(\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}\right)\left(V^{\sigma}\right. & \left.\frac{\partial}{\partial x^{\sigma}}, \cdot\right) \\
& =-\frac{1}{2} F_{\mu \nu}\left(V^{\sigma} \delta^{\mu}{ }_{\sigma} d x^{\nu}-V^{\sigma} \delta^{\nu}{ }_{\sigma} d x^{\mu}\right)=F_{\mu \nu} V^{\nu} d x^{\mu},
\end{aligned}
$$

which is exactly the definition Lorentz-force 4 -vector.

[^4]
[^0]: ${ }^{1}$ One can also see this via the Lagrangian and the Euler-Lagrange equations.

[^1]: ${ }^{2}$ Note that the expression for the angular velocity vector differs in space-fixed and body-fixed coordinates (see here).
 ${ }^{3}$ This is the coordinate system employed in question 3 of homework 2 where we calculated the vector fields corresponding to the motions of a rolling ball.
 ${ }^{4}$ Wikipedia includes a comprehensive list, https://en.wikipedia.org/wiki/Vector_calculus_identities

[^2]: ${ }^{5}$ Generalizations to higher dimensions can be clearly stated in the language of differential forms. See later comments for problem 4.

[^3]: ${ }^{6}$ Notice that here we need the absolute values on the Jacobian because we are considering the unoriented integral. In the final question, we will perform a similar calculation in the language of differential forms were the integrals are oriented. There the Jacobian factor is included with no absolute values.

[^4]: ${ }^{7}$ What we have done here is essentially derive Leibniz's rule for 2-forms. Analogous results, which follow the same line of reasoning, can be derived for general p-forms. See Flanders, Harley "Differentiation Under the Integral Sign" for a proof of the general statement.

