1 Lie Bracket Geometry

Recall the definition of the flow associated with a tangent-vector field (equation (11.24) in the textbook): it is the map that takes a point x_{0} and maps it to $x(t)$ by solving the family of equations

$$
\begin{equation*}
\frac{d x^{\mu}}{d t}=X^{\mu}\left(x^{1}, x^{2}, \ldots\right) \tag{1}
\end{equation*}
$$

with initial condition $x^{\mu}(0)=x_{0}^{\mu}$. The resulting (differential) equations are found easily enough.

$$
X=y \partial_{x} \Longrightarrow\left\{\begin{array} { l }
{ \dot { x } = y } \\
{ \dot { y } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x(t)=y_{0} t+x_{0} \\
y(t)=y_{0}
\end{array}\right.\right.
$$

and likewise for Y,

$$
Y=\partial_{y} \Longrightarrow\left\{\begin{array} { l }
{ \dot { x } = 0 } \\
{ \dot { y } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x(t)=x_{0} \\
y(t)=t+y_{0}
\end{array}\right.\right.
$$

Hence the flows associated with X and Y are

$$
\Phi^{X}(t)=\left(y_{0} t+x_{0}, y_{0}\right) \quad \text { and } \quad \Phi^{Y}(t)=\left(x_{0}, t+y_{0}\right) .
$$

The commutator is easily calculated:

$$
\begin{aligned}
{[X, Y] } & =X Y-Y X \\
& =y \partial_{x} \partial_{y}-\partial_{y}\left(y \partial_{x}\right) \\
& =y \partial_{x} \partial_{y}-y \partial_{x} \partial_{y}-\partial_{x} \\
& =-\partial_{x} .
\end{aligned}
$$

The geometric interpretation of the Lie bracket is discussed in section 11.2 of the textbook (see figure 11.3). Figure 1 shows this geometric interpretation for the case of the vector fields X and Y.

2 Frobenius' Theorem

Remember that a set of vector fields, $\left\{X_{i}\right\}$, are said to be in involution with each other if the Lie bracket is closed; i.e.,

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k} \tag{2}
\end{equation*}
$$

Figure 1: The trajectory of an initial point $\left(x_{0}, y_{0}\right)$ as it first flows along X by t, then along Y by s, and - starting the trip back - along X by $-t$, and finally along Y by $-s$. In agreement with the geometric interpretation discussed in the textbook, the difference between the initial and final points (dashed line) is just $s t[X, Y]=-s t \partial_{x}$.
for some set of functions $c_{i j}{ }^{k}$. By direct calculation (or in analogy with angular momentum),

$$
\begin{aligned}
{\left[L_{y}, L_{z}\right] } & =\left[z \partial_{x}-x \partial_{z}, x \partial_{y}-y \partial_{x}\right] & & \\
& =\left[z \partial_{x}, x \partial_{y}\right]-\left[z \partial_{x}, y \partial_{x}\right]-\left[x \partial_{z}, x \partial_{y}\right]+\left[x \partial_{z}, y \partial_{x}\right] & & \text { (linearity of }[\cdot, \cdot]) \\
& =z \partial_{y}-y \partial_{z} & & \left(=-L_{x}\right) \\
& =\frac{z}{x} \underbrace{\left(x \partial_{y}-y \partial_{x}\right)}_{=L_{z}}+\frac{y}{x} \underbrace{\left(z \partial_{x}-x \partial_{z}\right)}_{=L_{y}} . & &
\end{aligned}
$$

This shows $c_{y z}^{z}=z / x$ and $c_{y z}^{y}=y / x$, which satisfies definition (2), and hence L_{y} and L_{z} are in involution. If

$$
L_{z} f=\left(x \partial_{y}-y \partial_{x}\right) f=0 \quad \text { and } \quad-L_{y} f=\left(x \partial_{z}-z \partial_{x}\right) f=0,
$$

then $L^{2} f \equiv\left(L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right) f=0$ as well, since L_{y} and L_{z} are in involution. In other words, f is an eigenfunction of the "total angular momentum" operator and therefore must be spherically symmetric.

3 Rolling Ball

Expressions for $\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ in terms of the Euler angles can be read off directly from the diagram (given in the problem).

$$
\begin{align*}
& \omega_{x}=\underbrace{-\dot{\psi} \sin \theta \cos \phi}_{\begin{array}{c}
\text { project } \dot{\psi} \text { to } \\
y z \text {-plane }
\end{array}}+\underbrace{\dot{\theta} \sin \phi}_{\begin{array}{c}
\text { project } \dot{\theta} \text { to } \\
y z \text {-plane }
\end{array}} \tag{3a}\\
& \omega_{y}=\underbrace{\dot{\psi} \sin \theta \sin \phi}_{\begin{array}{c}
\text { project } \dot{\psi} \text { to } \\
x z \text {-plane }
\end{array}}+\underbrace{\dot{\theta} \cos \phi}_{\begin{array}{c}
\text { project } \dot{\theta} \text { to } \\
x z \text {-plane }
\end{array}}, \tag{3~b}\\
& \omega_{z}=\underbrace{\dot{\psi} \cos \theta}_{\begin{array}{c}
\text { project } \dot{\psi} \text { to } \\
x y \text {-plane }
\end{array}}+\underbrace{\dot{\phi}}_{\begin{array}{c}
\text { already in } \\
x y \text {-plane }
\end{array}} \tag{3c}
\end{align*}
$$

For example, to find ω_{z} we project all the angular velocities (i.e., $\dot{\theta}, \dot{\psi}, \dot{\phi}$) to the plane perpendicular to the z-axis. This procedure yields equations (3a) through (3c).
(a) The rolling conditions for a ball on a table mentioned in class are

$$
\begin{aligned}
\dot{x} & =\dot{\psi} \sin \theta \sin \phi+\dot{\theta} \cos \phi \\
\dot{y} & =-\dot{\psi} \sin \theta \cos \phi+\dot{\theta} \sin \phi \\
0 & =\dot{\psi} \cos \theta+\dot{\phi}
\end{aligned}
$$

Comparison with equations (3a), (3b), and (3c) shows that these are identically the no-slip rolling conditions:

$$
\begin{aligned}
\dot{x} & =\omega_{y} \\
\dot{y} & =-\omega_{x} \\
0 & =\omega_{z}
\end{aligned}
$$

(b) This problem can, essentially, be thought of as the reverse of problem one where we were given a vector field and asked to find its associated flow. Here, we are gifted a system of differential equations that specify a flow and asked to solve for the associated vector field. In the case of $\operatorname{roll}_{\mathbf{x}}$, it is a flow of unit velocity along the x-direction specified by $\dot{x}=1, \dot{y}=0$, and the three no-slip conditions, which give a system of five equations in five unknowns (the dotted variables). The case of $\mathrm{roll}_{\mathbf{y}}$ is analogous.

To find the vector field roll $_{\mathbf{x}}$ associated to the flow of unit speed along the x direction, we set
$\dot{x}=1, \dot{y}=0$, and then solve the resulting system of equations,

$$
\begin{align*}
& 1=\dot{\psi} \sin \theta \sin \phi+\dot{\theta} \cos \phi \tag{4a}\\
& 0=-\dot{\psi} \sin \theta \cos \phi+\dot{\theta} \sin \phi \tag{4b}\\
& 0=\dot{\psi} \cos \theta+\dot{\phi}, \tag{4c}
\end{align*}
$$

in terms of the local coordinates (here, only ϕ, θ, and ψ). A little bit of arithmetic yields

$$
\begin{align*}
(4 \mathrm{~b}) \tan \phi+4 \mathrm{a}) & \Longrightarrow \dot{\theta}=\cos \phi \tag{5a}\\
(4 \mathrm{~b})(-\cot \phi)+4 \mathrm{a}) & \Longrightarrow \dot{\psi}=\sin \phi \csc \theta \tag{5b}
\end{align*}
$$

Lastly, substituting equation (5c) into equation (4c) gives

$$
\begin{equation*}
\dot{\phi}=-\dot{\phi} \cos \theta=-\left(\frac{\dot{x} \sin \phi}{\sin \theta}\right) \cos \theta \Longrightarrow \dot{\phi}=-\sin \phi \cot \theta \tag{5c}
\end{equation*}
$$

Using (5a) through (5c), one can write the vector field in terms of the local coordinates,

$$
\begin{equation*}
\operatorname{roll}_{\mathbf{x}}=(\dot{x}(t), \dot{y}(t), \dot{\phi}(t), \dot{\theta}(t), \dot{\psi}(t))=\partial_{x}-(\sin \phi \cot \theta) \partial_{\phi}+(\cos \phi) \partial_{\theta}+(\sin \phi \csc \theta) \partial_{\psi} \tag{6}
\end{equation*}
$$

In the second equality, I've have written the vector field in terms of the (tangent space) basis elements $\left\{\partial_{x}, \partial_{y}, \partial_{\phi}, \partial_{\theta}, \partial_{\psi}\right\}$.

We use the analogous procedure to find Y, which instead satisfies the conditions $\dot{x}=0$ and $\dot{y}=1$. This gives the following system of equations:

$$
\begin{align*}
& 0=\dot{\psi} \sin \theta \sin \phi+\dot{\theta} \cos \phi \tag{7a}\\
& 1=-\dot{\psi} \sin \theta \cos \phi+\dot{\theta} \sin \phi \tag{7b}\\
& 0=\dot{\psi} \cos \theta+\dot{\phi} . \tag{7c}
\end{align*}
$$

These again are solved easily.

$$
\begin{align*}
\text { (7a) } \cot \phi+7 \mathrm{~b}) & \Longrightarrow \dot{\theta}=\sin \phi \tag{8a}\\
(7 \mathrm{a})(-\tan \phi)+7 \mathrm{~b} & \Longrightarrow \dot{\psi}=-\csc \theta \cos \phi . \tag{8b}
\end{align*}
$$

Finally, substituting (8b) into (7c), we find

$$
\begin{equation*}
\dot{\phi}=-\dot{\psi} \cos \theta=\cos \phi \cot \theta \Longrightarrow \dot{\phi}=\cos \phi \cot \theta \tag{8c}
\end{equation*}
$$

Using equations (8a) through (8c), one finds

$$
\begin{equation*}
\operatorname{roll}_{\mathbf{y}}=\partial_{y}+(\cos \phi \cot \theta) \partial_{\phi}+(\sin \phi) \partial_{\theta}-(\csc \theta \cos \phi) \partial_{\psi} \tag{9}
\end{equation*}
$$

(c) Having found both vector fields $\operatorname{roll}_{\mathbf{x}}$ and $\operatorname{roll}_{\mathbf{y}}$, we can compute the commutator by direct calculation.

$$
\begin{aligned}
{\left[\operatorname{roll}_{\mathbf{x}}, \operatorname{roll}_{\mathbf{y}}\right]=} & \left(\operatorname{roll}_{\mathbf{x}}\right)\left(\operatorname{roll}_{\mathbf{y}}\right)-\left(\operatorname{roll}_{\mathbf{y}}\right)\left(\operatorname{roll}_{\mathbf{x}}\right) \\
= & \left(\partial_{x}-(\sin \phi \cot \theta) \partial_{\phi}+(\cos \phi) \partial_{\theta}+(\sin \phi \csc \theta) \partial_{\psi}\right) \\
& \left(\partial_{y}+(\cos \phi \cot \theta) \partial_{\phi}+(\sin \phi) \partial_{\theta}-(\csc \theta \cos \phi) \partial_{\psi}\right) \\
& -\left(\partial_{y}+(\cos \phi \cot \theta) \partial_{\phi}+(\sin \phi) \partial_{\theta}-(\csc \theta \cos \phi) \partial_{\psi}\right) \\
& \left(\partial_{x}-(\sin \phi \cot \theta) \partial_{\phi}+(\cos \phi) \partial_{\theta}+(\sin \phi \csc \theta) \partial_{\psi}\right)
\end{aligned}
$$

(plug in (6) and (9))
$=\left(\left(\sin ^{2} \phi \cot ^{2} \theta\right) \partial_{\phi}-(\sin \phi \cos \phi \cot \theta) \partial_{\theta}-\left(\csc \theta \cot \theta \sin ^{2} \phi\right) \partial_{\psi}\right.$

$$
\left.-\left(\cos ^{2} \phi \csc ^{2} \theta\right) \partial_{\phi}+\left(\cot \phi \csc \phi \cos ^{2} \phi\right) \partial_{\psi}\right)
$$

$$
-\left(-\left(\cos ^{2} \phi \cot ^{2} \theta\right) \partial_{\phi}-(\sin \phi \cos \phi \cot \theta) \partial_{\theta}+\left(\cos ^{2} \phi \csc \theta \cot \theta\right) \partial_{\psi}\right.
$$

$$
\left.+\left(\sin ^{2} \phi \csc ^{2} \theta\right) \partial_{\phi}-\left(\sin ^{2} \phi \cot \theta \csc \theta\right) \partial_{\psi}\right)
$$

$$
=\underbrace{\left(\cot ^{2} \theta-\csc ^{2} \theta\right)}_{=-1} \partial_{\phi} .
$$

Since $\operatorname{spin}_{\mathbf{z}}=\partial_{\phi}$, we arrive at the desired result,

$$
\begin{equation*}
\left[\operatorname{roll}_{\mathrm{x}}, \operatorname{roll}_{\mathrm{y}}\right]=-\operatorname{spin}_{\mathrm{z}} \tag{10}
\end{equation*}
$$

(d) The commutators can be computed directly:

$$
\begin{aligned}
{\left[\operatorname{spin}_{\mathbf{z}}, \operatorname{roll}_{\mathbf{x}}\right]=} & \left(\mathbf{s p i n}_{\mathbf{z}}\right)\left(\operatorname{roll}_{\mathbf{x}}\right)-\left(\operatorname{roll}_{\mathbf{x}}\right)\left(\mathbf{s p i n}_{\mathbf{z}}\right) \\
& =-(\cos \phi \cot \theta) \partial_{\phi}-(\sin \phi) \partial_{\theta}+(\csc \theta \cos \phi) \partial_{\psi}=-\left(\mathbf{r o l l}_{\mathbf{y}}-\partial_{y}\right) \equiv \operatorname{spin}_{\mathbf{x}}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\mathbf{s p i n}_{\mathbf{z}}, \text { roll }_{\mathbf{y}}\right]=\left(\operatorname{spin}_{\mathbf{z}}\right)\left(\text { roll }_{\mathbf{y}}\right)-\left(\operatorname{roll}_{\mathbf{y}}\right)\left(\mathbf{s p i n}_{\mathbf{z}}\right) } \\
&=-(\sin \phi \cot \theta) \partial_{\phi}+(\cos \theta) \partial_{\theta}+(\csc \theta \sin \phi) \partial_{\psi}=\left(\operatorname{roll}_{\mathbf{x}}-\partial_{x}\right) \equiv \mathbf{s p i n}_{\mathbf{y}}
\end{aligned}
$$

Note that we have generated five linearly independent vector fields by taking commutators of $\operatorname{roll}_{\mathrm{x}}$ and roll $_{\mathbf{y}}$. This shows in fact that any point on the manifold can be reached only by rolling in the x or y direction.

4 Killing Vector

Using equation (11.38) from the textbook for the Lie derivative of a type $(0,2)$ tensor,

$$
\begin{equation*}
\left(\mathcal{L}_{X} g\right)_{\mu \nu}=X^{\alpha} \partial_{\alpha} g_{\mu \nu}+g_{\mu \alpha} \partial_{\nu} X^{\alpha}+g_{\alpha \nu} \partial_{\mu} X^{\alpha} \tag{11}
\end{equation*}
$$

we can check by direct computation that $\mathcal{L}_{V_{x}} g=0$, where

$$
g(,)=d \theta \otimes d \theta+\sin ^{2}(\theta) d \phi \otimes d \phi
$$

and

$$
V_{x}=-\sin (\phi) \partial_{\theta}-\cot (\theta) \cos (\phi) \partial_{\phi} .
$$

We first calculate all the necessary derivatives.

$$
\begin{array}{rlrl}
\partial_{\theta} g_{\phi \phi} & =2 \sin (\theta) \cos (\theta) & \partial_{\theta} V_{x}^{\phi} & =\csc ^{2}(\theta) \cos (\phi) \\
\partial_{\phi} V_{x}^{\theta} & =-\cos (\phi) & \partial_{\phi} V_{x}^{\phi}=\cot (\theta) \sin (\phi)
\end{array}
$$

All other derivatives vanish. Next, just show that all the components vanish identically:

$$
\begin{aligned}
&\left(\mathcal{L}_{V_{x}} g\right)_{\phi \phi}= V_{x}^{\phi} \partial_{\phi} g_{\phi \phi}+V_{x}^{\theta} \partial_{\theta} g_{\phi \phi}+g_{\phi \phi} \partial_{\phi} V_{x}^{\phi} \\
& \quad+g_{\phi \theta} \partial_{\phi} V_{x}^{\theta}+g_{\phi \phi} \partial_{\phi} V_{x}^{\phi}+g_{\theta \phi} \partial_{\phi} V_{x}^{\theta} \\
&=(-\sin (\phi))(2 \sin (\theta) \cos (\theta))+\left(\sin ^{2}(\theta)\right)(\cot (\theta) \sin (\phi)) \\
& \quad+\left(\sin ^{2}(\theta)\right)(\cot (\theta) \sin (\phi)) \\
&= 0, \\
& \\
&\left(\mathcal{L}_{V_{x}} g\right)_{\theta \theta}= V_{x}^{\phi} \partial_{\phi} g_{\theta \theta}+V_{x}^{\theta} \partial_{\theta} g_{\theta \theta}+g_{\theta \phi} \partial_{\theta} V_{x}^{\phi} \\
&+g_{\theta \theta} \partial_{\theta} V_{x}^{\theta}+g_{\phi \theta} \partial_{\theta} V_{x}^{\phi}+g_{\theta \theta} \partial_{\theta} V_{x}^{\theta} \\
&=0, \quad \text { (all terms multiplied by zero) } \\
& \\
&\left(\mathcal{L}_{V_{x}} g\right)_{\phi \theta}= V_{x}^{\phi} \partial_{\phi} g_{\phi \theta}+V_{x}^{\theta} \partial_{\theta} g_{\phi \theta}+g_{\phi \phi} \partial_{\theta} V_{x}^{\phi} \\
& \quad+g_{\phi \theta} \partial_{\theta} V_{x}^{\theta}+g_{\phi \theta} \partial_{\phi} V_{x}^{\phi}+g_{\theta \theta} \partial_{\phi} V_{x}^{\theta} \\
&=\left(\sin ^{2}(\theta)\right)\left(\csc ^{2}(\theta) \cos (\phi)\right)-\cos (\phi) \\
&=0,
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathcal{L}_{V_{x}} g\right)_{\theta \phi}= & V_{x}^{\phi} \partial_{\phi} g_{\phi \phi}+V_{x}^{\theta} \partial_{\theta} g_{\phi \phi}+g_{\phi \phi} \partial_{\phi} V_{x}^{\phi} \\
& +g_{\phi \theta} \partial_{\phi} V_{x}^{\theta}+g_{\phi \phi} \partial_{\phi} V_{x}^{\phi}+g_{\theta \phi} \partial_{\phi} V_{x}^{\theta} \\
= & -\cos (\phi)+\left(\sin ^{2}(\theta)\right)\left(\csc ^{2}(\theta) \cos (\phi)\right) \\
= & 0 .
\end{aligned}
$$

Hence, $\mathcal{L}_{V_{x}} g=0$ as expected.

