
Physics 509 Homework 3 Professor M. Stone

Spring 2022 University of Illinois

1 Infinitesimal Homotopy

The infinitesimal homotopy relation states

LXω = (diX + iXd)ω. (1)

Taking the exterior derivative of (1),

d(LXω) = d(diX + iXd)ω (using (1))

=✘✘✘✘d2iXω + d(iXdω) (d2 = 0)

= (diX + iXd)(dω) (add iXd2ω = 0)

= LX(dω).

2 Magnetic Solid

(a) We need to verify that

ẋ =
∂ǫ(k)

∂k
− k̇×Ω (2a)

k̇ = −
∂V

∂x
− eẋ×B (2b)

is indeed the Hamiltonian vector flow of H(x,k) = ǫ(k) + V (x) with the symplectic form ω.

This amounts to checking that

dH = −ivHω = −ω(vH , · ) (3)

reproduces equations (2b) and (2b). First, expand dH in local coordinates we find

dH =
∂H

∂xi
dxi +

∂H

∂ki
dki =

∂V (x)

∂xi
dxi +

∂ǫ(k)

∂ki
dki. (4)

Next, plugging in the velocity vector field,

vH = ẋi
∂

∂xi
+ k̇i

∂

∂ki
, (5)
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into −ω(vH , · ), we find1

−ω(vH , · ) = −

{

dkidxi −
e

2
ǫijkB

i(x)dxjdxk +
1

2
ǫijkΩ

i(k)dkjdkk
}(

ẋℓ
∂

∂xℓ
+ k̇ℓ

∂

∂kℓ
, ·

)

= −k̇idx
i + ẋidk

i +
e

2
ǫijkB

i(x)
[

ẋjdx
k − ẋkdx

j
]

−
1

2
ǫijkΩ

i(k)
[

k̇jdk
k − k̇kdk

j
]

=
[

−k̇k − eǫijkẋ
iBj(x)

︸ ︷︷ ︸

=
∂V (x)

∂xk

]

dxk +
[

ẋk + ǫijkk̇
iΩj(k)

︸ ︷︷ ︸

=
∂ǫ(k)

∂kk

]

dkk,

where in the last line I’ve relabeled indices, i ↔ j, and used equation (4) to write the underset

equalities. These equalities reproduce equations (2a) and (2b), as desired.

(b) We first check that ω is closed.

dω = d

{

dkidxi −
e

2
ǫijkB

i(x)dxjdxk +
1

2
ǫijkΩ

i(k)dkjdkk
}

= −
e

2
ǫijk

(
dBi(x)

)
dxjdxk +

1

2
ǫijk

(
dΩi(k)

)
dkjdkk

= −
e

2
ǫijk

(
∂Bi(x)

∂xℓ
dxℓ

)

dxjdxk +
1

2
ǫijk

(
Ωi(k)

∂kℓ
dkℓ

)

dkjdkk

= −
e

2
ǫijk

(
∂Bi(x)

∂xi

)

dxidxjdxk +
1

2
ǫijk

(
Ωi(k)

∂ki

)

dkidkjdkk (antisymmetry =⇒ ℓ = i).

Now the product ǫijkdx
idxjdxk is just proportional to dx1dx2dx3 (and likewise for the dkidkjdkk).

Hence we can write

dω ∝ −
e

2

(
∂Bi(x)

∂xi

)

︸ ︷︷ ︸

divx B

dx1dx2dx3 +
1

2

(
Ωi(k)

∂ki

)

︸ ︷︷ ︸

divk Ω

dk1dk2dk3.

But this vanishes identically since divxB = divkΩ = 0. Hence dω = 0, as desired.

To show the desired Poisson brackets, first we find expressions for ẋi and k̇i using equations

(2a) and (2b). To this end, note the following dot product equalities,

(2a) =⇒ ẋ ·Ω =
∂ǫ(k)

∂k
·Ω−

✘✘✘✘✘✘✘✿= 0
(k̇×Ω) ·Ω (6a)

(2b) =⇒ k̇ ·B = −
∂V (x)

∂x
·B−

✘✘✘✘✘✘✘✿
= 0

(eẋ×B) ·B. (6b)

1For notational convenience, I will drop the wedge product and write dxi
dx

j in place of dxi
∧dx

j . I will also simply
write dx

i rather than dx
i( · ), although it is still implied that the dual basis elements act on basis elements (of the

tangent space).
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Plugging (2b) into (2a),

ẋ =
∂ǫ(k)

∂k
−

[

−
∂V (x)

∂x
− eẋ×B

]

×Ω

=
∂ǫ(k)

∂k
+

∂V (x)

∂x
×Ω− [eẋ(Ω ·B)−B(eẋ ·Ω)] (BAC-CAB Rule)

=
∂ǫ(k)

∂k
+

∂V (x)

∂x
×Ω−

[

eẋ(Ω ·B)−B(e
∂ǫ(k)

∂k
·Ω)

]

(equation (6a)).

This rearranges to

ẋ(1 + eB ·Ω) =
∂ǫ(k)

∂k
+

∂V (x)

∂x
×Ω+B

(

e
∂ǫ(k)

∂k
·Ω

)

. (7)

The analogous procedure for k̇ yields

k̇(1 + eB · Ω) = −
∂V (x)

∂x
− e

∂ǫ(k)

∂k
×B−Ω

(

e
∂V (x)

∂x
·B

)

. (8)

Now, in part (a) we showed that equations (2a) and (2b) are Hamiltonian with ω as the

symplectic form for any Hamiltonian of the form H(x,k) = ǫ(k) + V (x). We can then easily

relate the time derivatives of functions with the Poisson bracket with a Hamiltonian function

via2

{H1,H2}
def
=

dH2

dt

∣
∣
∣
∣
H1

= Ḣ2. (9)

Or equivalently, {f,H} = −ḟ (since {f, g} = −{g, f}).

The computation of the Poisson brackets follows immediately. Choosing f = xi and H = xj ,

equation (7) yields

{xi, xj} = −ẋi = −
ǫijkΩk

(1 + eB · Ω)
.

The remaining two Poisson brackets follow by the same procedure but with the Hamiltonian

function H = kj . Summarizing, one finds

{xi, xj} = −
ǫijkΩk

(1 + eB ·Ω)
, {xi, kj} = −

δij + eBiΩj

(1 + eB ·Ω)
, {ki, kj} =

ǫijkeBk

(1 + eB ·Ω)
.

(c) The conserved phase-space volume ω3/3! can be computed by direct calculation. Note that

terms like dxi ∧ dxj ∧ dxk ∧ dxℓ vanish since necessarily there will be one repeated index for

2See equation (11.96) in the textbook. Also note that the definition given here and in the textbook differs by a
minus sign from the traditional one. The literature is sometimes inconsistent with which definition is used, so it is
always worth checking the convention used.
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three spatial dimensions (an analogous argument holds for the k’s). Hence

ω3 = dxidkidxjdkjdxkdkk + 3!(dkidxi)
(

−
e

2
ǫi′j′k′B

i′dxj
′

dxk
′

)(
1

2
ǫi′′j′′k′′Ω

i′′dkj
′′

dkk
′′

)

= dkidkjdkkdxidxjdkk − 3!
e

4

(

ǫi′j′k′ǫi′′j′′k′′B
i′Ωi′′

)

dkidxidxj
′

dxk
′

dkj
′′

dkk
′′

= 3! [1 + (eB ·Ω)] dk1dk2dk3dx1dx2dx3,

which implies ω3/3! = (1 + eB ·Ω)d3kd3x, as desired.

3 Non-abelian Gauge Fields as Matrix-valued Forms

(i) Given A = Aµdx
µ, write

2A2 = AµAνdx
µdxν +AµAνdx

µdxν = (AµAν −AνAµ)dx
µdxν

=⇒ A2 =
1

2
[Aµ, Aν ]dx

µdxν ,

where in the last equality I’ve used dxµdxν = −dxνdxµ and relabeled indices. Similarly, one

finds dA = 1
2(∂µAν − ∂νAµ)dx

µdxν , so that

F = dA+A2 = (∂µ∂ν − ∂νAµ + [Aµ, Aν ])
︸ ︷︷ ︸

=Fµν

dxµdxν .

(ii) Using the definition of the gauge-covariant derivatives,

∇µ = ∂µ −Aµ,

one finds

[∇µ,∇ν ] = ∇µ∇ν −∇ν∇µ

= (∂µ −Aµ)(∂ν −Aν)− (∂ν −Aν)(∂µ −Aµ)

= ∂µ∂ν + (∂µAν) +Aν∂µ +Aµ∂ν +AµAν

− ∂ν∂µ − (∂νAµ)−Aµ∂ν −Aν∂µ −AνAµ

(expand and cancel)

= (∂µAν)− (∂νAµ) +AµAν −AνAµ

= ∂µAν − ∂νAµ + [Aµ, Aν ]

= Fµν (by part (i)).

(iii) Let g be an invertable matrix and δg be a matrix describing a small change in g (we assume
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g + δg is still invertable).

(g + δg)(g−1 + δ(g−1)) = id =⇒ gg−1

︸︷︷︸

=id

+g(δg)−1 + (δg)g−1 + (δg)δ(g−1)
︸ ︷︷ ︸

O(δ2)

= id

=⇒ (δg)−1 = −g−1(δg)g−1.

Alternatively, by demanding there is no variation in the identity, we find 0 = δ(gg−1) =

(δg)g−1 + gδ(g−1) =⇒ δ(g−1) ≡ (δg)−1 = −g−1(δg)g−1.

(iv) Suppose that the matrix-valued gauge field is a “pure gauge”; i.e., that A = g−1dg. Then

dA = d(g−1dg) = d(g−1)dg = −g−1dg g−1dg =
(
g−1dg

)−1
.

This shows that

F = dA+A2 = −
(
g−1dg

)2
+

(
g−1dg

)2
= 0,

as desired.

(v) Under a gauge transformation,

Aµ 7→ Ag
µ ≡ g−1Aµg + g−1(∂µg).

Therefore, the covariant derivative transforms like

∇µ 7→ ∇g
µ ≡ ∂µ +Ag

µ = g−1g∂µ + g−1(∂µg) + g−1Aµg = g−1(∂µ +Aµ)g.

In the last equality, we have used the fact that the derivative acts to the right along with the

chain rule (in reverse). Hence, ∇µ 7→ g−1∇µg under a gauge transformation. Using the result

from part (ii) (Fµν = [∇µ,∇ν ]), we can easily find how Fµν behaves when transformed.

Fµν = [∇µ,∇ν ] 7→ [g−1∇µg, g
−1∇νg] = g−1[∇µ,∇ν ]g = g−1Fµνg,

as desired.

(vi) To show the Bianchi identity, we simply take the exterior derivative of F .

dF = d(dA +A2)

=✟
✟✟d2A+ (dA)A −A(dA) (d2 = 0)

= (F −A2)A−A(F −A2) (dA = F −A2)

= FA−AF.

This rearranges to dF − FA+AF = 0, as desired.
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(vii) Next, use the Bianchi identity to show that the 4-form is closed.

d tr(F 2) = tr(dF 2) (d tr = tr d)

= tr((dF )F + F (dF ))

= tr((FA−AF )F + F (FA−AF )) (Bianchi identity)

= tr(✘✘✘FAF −AFF + FFA−✘✘✘FAF )

= − tr(AFF ) + tr(AFF ) (cyclic perm.)

= 0.

Note that in this case the cyclic permutation of matrix-valued forms is also even so that this

operation doesn’t change the sign in the wedge product,3

tr(FFA) = tr(FµνFγδAλ)dx
µdxνdxγdxδdxλ

= (−1)4 tr(AλFµνFγδ)dx
λdxµdxνdxγdxδ

= tr(AFF ).

(viii) Before showing that

tr(F 2) = d

{

tr

(

AdA+
2

3

)}

, (10)

first note that tr(A4) = 0 since

tr(A4) = tr(AµAνAγAδ)dx
µdxνdxγdxδ

= (−1)3 tr(AδAµAνAγ)dx
δdxµdxνdxγ

= − tr(A4).

In the second equality, we have cyclically permuted matrices under the trace; however, unlike

the product of three matrices in part (vii), this is obtained via an odd permutation which

introduces a minus in the 4-form. With this, we can show (10) beginning from the right-hand-

side.

d

{

tr

(

AdA+
2

3
A3

)}

= tr

{

(dA)2 +
2

3

[
(dA)A2 +

= 1
2
A2(dA)+ 1

2
(dA)A2

︷ ︸︸ ︷

A(dA)A+A2(dA)
]
}

= tr
{
(dA)2 +A2(dA) + (dA)A2 + (A2)2

}
(tr(A4) = 0)

= tr
{
(dA+A2)2

}

= tr
{
F 2

}
.

Hence tr(F 2) is also exact. In the first line, I’ve used the cyclic property of the trace to write

3Again, the wedge product is implicit.
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A(dA)A in a symmetric way.
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