Physics 509 Homework 3

Professor M. Stone
Spring 2022

University of Illinois

1 Infinitesimal Homotopy

The infinitesimal homotopy relation states

$$
\begin{equation*}
\mathcal{L}_{X} \omega=\left(d i_{X}+i_{X} d\right) \omega \tag{1}
\end{equation*}
$$

Taking the exterior derivative of

$$
\begin{aligned}
d\left(\mathcal{L}_{X} \omega\right) & =d\left(d i_{X}+i_{X} d\right) \omega \\
& =d^{2} i_{X} \omega+d\left(i_{X} d \omega\right) \\
& =\left(d i_{X}+i_{X} d\right)(d \omega) \\
& =\mathcal{L}_{X}(d \omega) .
\end{aligned}
$$

2 Magnetic Solid

(a) We need to verify that

$$
\begin{align*}
& \dot{\mathbf{x}}=\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}-\dot{\mathbf{k}} \times \boldsymbol{\Omega} \tag{2a}\\
& \dot{\mathbf{k}}=-\frac{\partial V}{\partial \mathbf{x}}-e \dot{\mathbf{x}} \times \mathbf{B} \tag{2b}
\end{align*}
$$

is indeed the Hamiltonian vector flow of $H(\mathbf{x}, \mathbf{k})=\epsilon(\mathbf{k})+V(\mathbf{x})$ with the symplectic form ω. This amounts to checking that

$$
\begin{equation*}
d H=-i_{v_{H}} \omega=-\omega\left(v_{H}, \cdot\right) \tag{3}
\end{equation*}
$$

reproduces equations $\quad \because$ and $\quad \cdots$. First, expand $d H$ in local coordinates we find

$$
\begin{equation*}
d H=\frac{\partial H}{\partial x^{i}} d x^{i}+\frac{\partial H}{\partial k^{i}} d k^{i}=\frac{\partial V(\mathbf{x})}{\partial x^{i}} d x^{i}+\frac{\partial \epsilon(\mathbf{k})}{\partial k^{i}} d k^{i} \tag{4}
\end{equation*}
$$

Next, plugging in the velocity vector field,

$$
\begin{equation*}
v_{H}=\dot{x}^{i} \frac{\partial}{\partial x^{i}}+\dot{k}^{i} \frac{\partial}{\partial k^{i}}, \tag{5}
\end{equation*}
$$

into $-\omega\left(v_{H}, \cdot\right)$, we fin

$$
\begin{aligned}
-\omega\left(v_{H}, \cdot\right) & =-\left\{d k^{i} d x^{i}-\frac{e}{2} \epsilon_{i j k} B^{i}(\mathbf{x}) d x^{j} d x^{k}+\frac{1}{2} \epsilon_{i j k} \Omega^{i}(\mathbf{k}) d k^{j} d k^{k}\right\}\left(\dot{x}^{\ell} \frac{\partial}{\partial x^{\ell}}+\dot{k}^{\ell} \frac{\partial}{\partial k^{\ell}}, \cdot\right) \\
& =-\dot{k}_{i} d x^{i}+\dot{x}_{i} d k^{i}+\frac{e}{2} \epsilon_{i j k} B^{i}(\mathbf{x})\left[\dot{x}_{j} d x^{k}-\dot{x}_{k} d x^{j}\right]-\frac{1}{2} \epsilon_{i j k} \Omega^{i}(\mathbf{k})\left[\dot{k}_{j} d k^{k}-\dot{k}_{k} d k^{j}\right] \\
& =[\underbrace{-\dot{k}_{k}-e \epsilon_{i j k} \dot{x}^{i} B^{j}(\mathbf{x})}_{=\frac{\partial V(\mathbf{x})}{\partial x^{k}}}] d x^{k}+[\underbrace{\dot{x}_{k}+\epsilon_{i j k} \dot{k}^{i} \Omega^{j}(\mathbf{k})}_{=\frac{\partial \epsilon(\mathbf{k})}{\partial k^{k}}}] d k^{k},
\end{aligned}
$$

where in the last line I've relabeled indices, $i \leftrightarrow j$, and used equation to write the underset equalities. These equalities reproduce equations $\quad-\quad$ and $\quad . \quad$, as desired.
(b) We first check that ω is closed.

$$
\begin{aligned}
d \omega & =d\left\{d k^{i} d x^{i}-\frac{e}{2} \epsilon_{i j k} B^{i}(\mathbf{x}) d x^{j} d x^{k}+\frac{1}{2} \epsilon_{i j k} \Omega^{i}(\mathbf{k}) d k^{j} d k^{k}\right\} \\
& =-\frac{e}{2} \epsilon_{i j k}\left(d B^{i}(\mathbf{x})\right) d x^{j} d x^{k}+\frac{1}{2} \epsilon_{i j k}\left(d \Omega^{i}(\mathbf{k})\right) d k^{j} d k^{k} \\
& =-\frac{e}{2} \epsilon_{i j k}\left(\frac{\partial B^{i}(\mathbf{x})}{\partial x^{\ell}} d x^{\ell}\right) d x^{j} d x^{k}+\frac{1}{2} \epsilon_{i j k}\left(\frac{\Omega^{i}(\mathbf{k})}{\partial k^{\ell}} d k^{\ell}\right) d k^{j} d k^{k} \\
& =-\frac{e}{2} \epsilon_{i j k}\left(\frac{\partial B^{i}(\mathbf{x})}{\partial x^{i}}\right) d x^{i} d x^{j} d x^{k}+\frac{1}{2} \epsilon_{i j k}\left(\frac{\Omega^{i}(\mathbf{k})}{\partial k^{i}}\right) d k^{i} d k^{j} d k^{k} \quad(\text { antisymmetry } \Longrightarrow \ell=i) .
\end{aligned}
$$

Now the product $\epsilon_{i j k} d x^{i} d x^{j} d x^{k}$ is just proportional to $d x^{1} d x^{2} d x^{3}$ (and likewise for the $d k^{i} d k^{j} d k^{k}$). Hence we can write

$$
d \omega \propto-\frac{e}{2} \underbrace{\left(\frac{\partial B^{i}(\mathbf{x})}{\partial x^{i}}\right)}_{\operatorname{div}_{\mathbf{x}} \mathbf{B}} d x^{1} d x^{2} d x^{3}+\frac{1}{2} \underbrace{\left(\frac{\Omega^{i}(\mathbf{k})}{\partial k^{i}}\right)}_{\operatorname{div}_{\mathbf{k}} \boldsymbol{\Omega}} d k^{1} d k^{2} d k^{3}
$$

But this vanishes identically since $\operatorname{div}_{\mathbf{x}} \mathbf{B}=\operatorname{div}_{\mathbf{k}} \boldsymbol{\Omega}=0$. Hence $d \omega=0$, as desired.
To show the desired Poisson brackets, first we find expressions for \dot{x}_{i} and \dot{k}_{i} using equations and \cdots. To this end, note the following dot product equalities,

$$
\begin{align*}
& \because \Longrightarrow \dot{\mathbf{x}} \cdot \boldsymbol{\Omega}=\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}} \cdot \boldsymbol{\Omega}-(\dot{\mathbf{k}} \times \boldsymbol{\Omega}) \cdot \overrightarrow{\boldsymbol{\Omega}}=0 \tag{6a}\\
& \cdots \quad \Longrightarrow \dot{\mathbf{k}} \cdot \mathbf{B}=-\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \cdot \mathbf{B}-(e \dot{\mathbf{x}} \times \mathbf{B}) \cdot \overrightarrow{\mathbf{B}}=0 \tag{6~b}
\end{align*}
$$

[^0]Plugging \quad-. into

$$
\begin{align*}
\dot{\mathbf{x}} & =\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}-\left[-\frac{\partial V(\mathbf{x})}{\partial x}-e \dot{\mathbf{x}} \times \mathbf{B}\right] \times \boldsymbol{\Omega} \\
& =\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}+\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \times \boldsymbol{\Omega}-[e \dot{\mathbf{x}}(\boldsymbol{\Omega} \cdot \mathbf{B})-\mathbf{B}(e \dot{\mathbf{x}} \cdot \boldsymbol{\Omega})] \tag{BAC-CABRule}\\
& =\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}+\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \times \boldsymbol{\Omega}-\left[e \dot{\mathbf{x}}(\boldsymbol{\Omega} \cdot \mathbf{B})-\mathbf{B}\left(e \frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}} \cdot \boldsymbol{\Omega}\right)\right] \quad \text { (equation }
\end{align*}
$$

This rearranges to

$$
\begin{equation*}
\dot{\mathbf{x}}(1+e \mathbf{B} \cdot \boldsymbol{\Omega})=\frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}}+\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \times \boldsymbol{\Omega}+\mathbf{B}\left(e \frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}} \cdot \boldsymbol{\Omega}\right) \tag{7}
\end{equation*}
$$

The analogous procedure for $\dot{\mathbf{k}}$ yields

$$
\begin{equation*}
\dot{\mathbf{k}}(1+e \mathbf{B} \cdot \Omega)=-\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}}-e \frac{\partial \epsilon(\mathbf{k})}{\partial \mathbf{k}} \times \mathbf{B}-\boldsymbol{\Omega}\left(e \frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \cdot \mathbf{B}\right) \tag{8}
\end{equation*}
$$

Now, in part (a) we showed that equations - and $\quad . \quad$ are Hamiltonian with ω as the symplectic form for any Hamiltonian of the form $H(\mathbf{x}, \mathbf{k})=\epsilon(\mathbf{k})+V(\mathbf{x})$. We can then easily relate the time derivatives of functions with the Poisson bracket with a Hamiltonian function

$$
\begin{equation*}
\left.\left\{H_{1}, H_{2}\right\} \stackrel{\text { def }}{=} \frac{d H_{2}}{d t}\right|_{H_{1}}=\dot{H}_{2} \tag{9}
\end{equation*}
$$

Or equivalently, $\{f, H\}=-\dot{f}($ since $\{f, g\}=-\{g, f\})$.
The computation of the Poisson brackets follows immediately. Choosing $f=x_{i}$ and $H=x_{j}$, equation yields

$$
\left\{x_{i}, x_{j}\right\}=-\dot{x}_{i}=-\frac{\epsilon_{i j k} \Omega_{k}}{(1+e \mathbf{B} \cdot \Omega)}
$$

The remaining two Poisson brackets follow by the same procedure but with the Hamiltonian function $H=k_{j}$. Summarizing, one finds

$$
\left\{x_{i}, x_{j}\right\}=-\frac{\epsilon_{i j k} \Omega_{k}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})}, \quad\left\{x_{i}, k_{j}\right\}=-\frac{\delta_{i j}+e B_{i} \Omega_{j}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})}, \quad\left\{k_{i}, k_{j}\right\}=\frac{\epsilon_{i j k} e B_{k}}{(1+e \mathbf{B} \cdot \boldsymbol{\Omega})}
$$

(c) The conserved phase-space volume $\omega^{3} / 3$! can be computed by direct calculation. Note that terms like $d x^{i} \wedge d x^{j} \wedge d x^{k} \wedge d x^{\ell}$ vanish since necessarily there will be one repeated index for

[^1]three spatial dimensions (an analogous argument holds for the k 's). Hence
\[

$$
\begin{aligned}
\omega^{3} & =d x^{i} d k^{i} d x^{j} d k^{j} d x^{k} d k^{k}+3!\left(d k^{i} d x^{i}\right)\left(-\frac{e}{2} \epsilon_{i^{\prime} j^{\prime} k^{\prime}} B^{i^{\prime}} d x^{j^{\prime}} d x^{k^{\prime}}\right)\left(\frac{1}{2} \epsilon_{i^{\prime \prime} j^{\prime \prime \prime}} k^{\prime \prime} \Omega^{i^{\prime \prime}} d k^{j^{\prime \prime}} d k^{k^{\prime \prime}}\right) \\
& =d k^{i} d k^{j} d k^{k} d x^{i} d x^{j} d k^{k}-3!\frac{e}{4}\left(\epsilon_{\left.i^{\prime} j^{\prime} k^{\prime} \epsilon_{i^{\prime \prime} j^{\prime \prime} k^{\prime \prime}} B^{i^{\prime}} \Omega^{i^{\prime \prime}}\right) d k^{i} d x^{i} d x^{j^{\prime}} d x^{k^{\prime}} d k^{j^{\prime \prime}} d k^{k^{\prime \prime}}}\right. \\
& =3![1+(e \mathbf{B} \cdot \boldsymbol{\Omega})] d k^{1} d k^{2} d k^{3} d x^{1} d x^{2} d x^{3},
\end{aligned}
$$
\]

which implies $\omega^{3} / 3!=(1+e \mathbf{B} \cdot \boldsymbol{\Omega}) d^{3} k d^{3} x$, as desired.

3 Non-abelian Gauge Fields as Matrix-valued Forms

(i) Given $A=A_{\mu} d x^{\mu}$, write

$$
\begin{aligned}
2 A^{2}=A_{\mu} A_{\nu} d x^{\mu} d x^{\nu}+A_{\mu} A_{\nu} d x^{\mu} d x^{\nu}=\left(A_{\mu} A_{\nu}-A_{\nu} A_{\mu}\right) d x^{\mu} d x^{\nu} & \\
& \Longrightarrow A^{2}=\frac{1}{2}\left[A_{\mu}, A_{\nu}\right] d x^{\mu} d x^{\nu}
\end{aligned}
$$

where in the last equality I've used $d x^{\mu} d x^{\nu}=-d x^{\nu} d x^{\mu}$ and relabeled indices. Similarly, one finds $d A=\frac{1}{2}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) d x^{\mu} d x^{\nu}$, so that

$$
F=d A+A^{2}=\underbrace{\left(\partial_{\mu} \partial_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]\right)}_{=F_{\mu \nu}} d x^{\mu} d x^{\nu}
$$

(ii) Using the definition of the gauge-covariant derivatives,

$$
\nabla_{\mu}=\partial_{\mu}-A_{\mu}
$$

one finds

$$
\begin{array}{rlr}
{\left[\nabla_{\mu}, \nabla_{\nu}\right]=} & \nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu} & \\
= & \left(\partial_{\mu}-A_{\mu}\right)\left(\partial_{\nu}-A_{\nu}\right)-\left(\partial_{\nu}-A_{\nu}\right)\left(\partial_{\mu}-A_{\mu}\right) \\
= & \partial_{\mu} \partial_{\nu}+\left(\partial_{\mu} A_{\nu}\right)+A_{\nu} \partial_{\mu}+A_{\mu} \partial_{\nu}+A_{\mu} A_{\nu} & \\
& \quad-\partial_{\nu} \partial_{\mu}-\left(\partial_{\nu} A_{\mu}\right)-A_{\mu} \partial_{\nu}-A_{\nu} \partial_{\mu}-A_{\nu} A_{\mu} \\
= & \left(\partial_{\mu} A_{\nu}\right)-\left(\partial_{\nu} A_{\mu}\right)+A_{\mu} A_{\nu}-A_{\nu} A_{\mu} & \\
= & \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right] & \\
= & F_{\mu \nu} & \text { (by part (i)). }
\end{array}
$$

(iii) Let g be an invertable matrix and δg be a matrix describing a small change in g (we assume
$g+\delta g$ is still invertable).

$$
\begin{aligned}
(g+\delta g)\left(g^{-1}+\delta\left(g^{-1}\right)\right)=\mathrm{id} \Longrightarrow \underbrace{g g^{-1}}_{=\mathrm{id}}+g(\delta g)^{-1}+(\delta g) g^{-1} & +\underbrace{(\delta g) \delta\left(g^{-1}\right)}_{\mathcal{O}\left(\delta^{2}\right)}=\mathrm{id} \\
& \Longrightarrow(\delta g)^{-1}=-g^{-1}(\delta g) g^{-1} .
\end{aligned}
$$

Alternatively, by demanding there is no variation in the identity, we find $0=\delta\left(g g^{-1}\right)=$ $(\delta g) g^{-1}+g \delta\left(g^{-1}\right) \Longrightarrow \delta\left(g^{-1}\right) \equiv(\delta g)^{-1}=-g^{-1}(\delta g) g^{-1}$.
(iv) Suppose that the matrix-valued gauge field is a "pure gauge"; i.e., that $A=g^{-1} d g$. Then

$$
d A=d\left(g^{-1} d g\right)=d\left(g^{-1}\right) d g=-g^{-1} d g g^{-1} d g=\left(g^{-1} d g\right)^{-1}
$$

This shows that

$$
F=d A+A^{2}=-\left(g^{-1} d g\right)^{2}+\left(g^{-1} d g\right)^{2}=0
$$

as desired.
(v) Under a gauge transformation,

$$
A_{\mu} \mapsto A_{\mu}^{g} \equiv g^{-1} A_{\mu} g+g^{-1}\left(\partial_{\mu} g\right) .
$$

Therefore, the covariant derivative transforms like

$$
\nabla_{\mu} \mapsto \nabla_{\mu}^{g} \equiv \partial_{\mu}+A_{\mu}^{g}=g^{-1} g \partial_{\mu}+g^{-1}\left(\partial_{\mu} g\right)+g^{-1} A_{\mu} g=g^{-1}\left(\partial_{\mu}+A_{\mu}\right) g .
$$

In the last equality, we have used the fact that the derivative acts to the right along with the chain rule (in reverse). Hence, $\nabla_{\mu} \mapsto g^{-1} \nabla_{\mu} g$ under a gauge transformation. Using the result from part (ii) $\left(F_{\mu \nu}=\left[\nabla_{\mu}, \nabla_{\nu}\right]\right)$, we can easily find how $F_{\mu \nu}$ behaves when transformed.

$$
F_{\mu \nu}=\left[\nabla_{\mu}, \nabla_{\nu}\right] \mapsto\left[g^{-1} \nabla_{\mu} g, g^{-1} \nabla_{\nu} g\right]=g^{-1}\left[\nabla_{\mu}, \nabla_{\nu}\right] g=g^{-1} F_{\mu \nu} g,
$$

as desired.
(vi) To show the Bianchi identity, we simply take the exterior derivative of F.

$$
\begin{array}{rlrl}
d F & =d\left(d A+A^{2}\right) & \\
& =d^{2} A+(d A) A-A(d A) & & \left(d^{2}=0\right) \\
& =\left(F-A^{2}\right) A-A\left(F-A^{2}\right) & & \left(d A=F-A^{2}\right) \\
& =F A-A F . &
\end{array}
$$

This rearranges to $d F-F A+A F=0$, as desired.
(vii) Next, use the Bianchi identity to show that the 4 -form is closed.

$$
\begin{array}{rlrl}
d \operatorname{tr}\left(F^{2}\right) & =\operatorname{tr}\left(d F^{2}\right) & (d \operatorname{tr}=\operatorname{tr} d) \\
& =\operatorname{tr}((d F) F+F(d F)) & \\
& =\operatorname{tr}((F A-A F) F+F(F A-A F)) & & \text { (Bianchi identity) } \\
& =\operatorname{tr}(F A F-A F F+F F A-F A F) & \\
& =-\operatorname{tr}(A F F)+\operatorname{tr}(A F F) & \text { (cyclic perm.) } \\
& =0 . &
\end{array}
$$

Note that in this case the cyclic permutation of matrix ralued forms is also even so that this operation doesn't change the sign in the wedge product

$$
\begin{aligned}
\operatorname{tr}(F F A) & =\operatorname{tr}\left(F_{\mu \nu} F_{\gamma \delta} A_{\lambda}\right) d x^{\mu} d x^{\nu} d x^{\gamma} d x^{\delta} d x^{\lambda} \\
& =(-1)^{4} \operatorname{tr}\left(A_{\lambda} F_{\mu \nu} F_{\gamma \delta}\right) d x^{\lambda} d x^{\mu} d x^{\nu} d x^{\gamma} d x^{\delta} \\
& =\operatorname{tr}(A F F) .
\end{aligned}
$$

(viii) Before showing that

$$
\begin{equation*}
\operatorname{tr}\left(F^{2}\right)=d\left\{\operatorname{tr}\left(A d A+\frac{2}{3}\right)\right\}, \tag{10}
\end{equation*}
$$

first note that $\operatorname{tr}\left(A^{4}\right)=0$ since

$$
\begin{aligned}
\operatorname{tr}\left(A^{4}\right) & =\operatorname{tr}\left(A_{\mu} A_{\nu} A_{\gamma} A_{\delta}\right) d x^{\mu} d x^{\nu} d x^{\gamma} d x^{\delta} \\
& =(-1)^{3} \operatorname{tr}\left(A_{\delta} A_{\mu} A_{\nu} A_{\gamma}\right) d x^{\delta} d x^{\mu} d x^{\nu} d x^{\gamma} \\
& =-\operatorname{tr}\left(A^{4}\right) .
\end{aligned}
$$

In the second equality, we have cyclically permuted matrices under the trace; however, unlike the product of three matrices in part (vii), this is obtained via an odd permutation which introduces a minus in the 4 -form. With this, we can show -- beginning from the right-handside.

$$
\begin{aligned}
d\left\{\operatorname{tr}\left(A d A+\frac{2}{3} A^{3}\right)\right\} & =\operatorname{tr}\{(d A)^{2}+\frac{2}{3}[(d A) A^{2}+\overbrace{A(d A) A}^{=\frac{1}{2} A^{2}(d A)+A^{2}(d A) A^{2}}(d A)]\} \\
& =\operatorname{tr}\left\{(d A)^{2}+A^{2}(d A)+(d A) A^{2}+\left(A^{2}\right)^{2}\right\} \quad\left(\operatorname{tr}\left(A^{4}\right)=0\right) \\
& =\operatorname{tr}\left\{\left(d A+A^{2}\right)^{2}\right\} \\
& =\operatorname{tr}\left\{F^{2}\right\} .
\end{aligned}
$$

Hence $\operatorname{tr}\left(F^{2}\right)$ is also exact. In the first line, I've used the cyclic property of the trace to write

[^2]$A(d A) A$ in a symmetric way.

[^0]: ${ }^{1}$ For notational convenience, I will drop the wedge product and write $d x^{i} d x^{j}$ in place of $d x^{i} \wedge d x^{j}$. I will also simply write $d x^{i}$ rather than $d x^{i}(\cdot)$, although it is still implied that the dual basis elements act on basis elements (of the tangent space).

[^1]: ${ }^{2}$ See equation (11.96) in the textbook. Also note that the definition given here and in the textbook differs by a minus sign from the traditional one. The literature is sometimes inconsistent with which definition is used, so it is always worth checking the convention used.

[^2]: ${ }^{3}$ Again, the wedge product is implicit.

