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1 Infinitesimal Homotopy

The infinitesimal homotopy relation states
Lxw = (diX + ixd)w.

Taking the exterior derivative of (ll),

d(Lxw) =d(dix +ixd)w
= A%< + d(ixdw)
= (diX + ixd)(dw)
= Lx (dw).
2 Magnetic Solid
(a) We need to verify that
Je(k)
T k x Q
k= —g—z —exx B

(using (M)
(d* =0)
(add ixd*w = 0)

is indeed the Hamiltonian vector flow of H(x,k) = e(k) + V(x) with the symplectic form w.

This amounts to checking that

dH = —iyyw = —w(vm,

-) (3)

reproduces equations (lll) and (lll). First, expand dH in local coordinates we find

O0H , ., OH oV (x)

Oe(k)

dH = axidaz + Okidk =y dz +de:. (4)
Next, plugging in the velocity vector field,
;0 .0
VH =T i * ok’ (5)



into —w(vy, - ), we ﬁndl
—wlvg, ) = —dkidat — e Bi(x)dad dz + e QO (k)dk? dk* 2 + k= o
H, 2 ijk 2 ijk Ol oKL’
— —jedet & gedki 4 & i Lok g 1 0l ok g a1
= —hydo’ + didk’ + Seii B () [xjdx — dpda ] — Sens (k) [k;jdk —kkdk}
_ [_/;;k — eeipi' B (x)}da;’f + [azk + eijkkin(k)]dkk,

_9V(x) _ Be(k)
~ ozk — okk

where in the last line I've relabeled indices, i <+ j, and used equation (M) to write the underset
equalities. These equalities reproduce equations (lll) and (ll), as desired.

(b) We first check that w is closed.

dw=d {dk:ida:i - geijkBi(X)d:EdeEk + %eiiji(k)dk’jdk‘k}

= _ge,.jk (dB'(x)) dz’da" + %eijk (' (k)) dk? dk*

Bt 1 Ok ’
— _ge,.jk (8 () gt > daddz® + = Uk( aéz)dkf> dk? dk*

ox’
e 0B (x) i 1 Qi (k) i gk ) iy
= —5€ijk < It ) do'da? da® + = 5 Cijh < o5 dk'dk’ dE”  (antisymmetry = £ =1).

Now the product eijkdxidxj dx* is just proportional to dz'dz?dx® (and likewise for the dk*dk? dkF).
Hence we can write

dw o< —= (83 (x )> do' da?dx® + % (Q (lf)> dk*dk?dk>.

2 ox’
————
divx B divy Q2

But this vanishes identically since divy B = divy €2 = 0. Hence dw = 0, as desired.

To show the desired Poisson brackets, first we find expressions for #; and k; using equations
(M) and (WM. To this end, note the following dot product equalities,

(-):>xﬂ—— (6a)

Q- (oeny @
/4437/' (6b)

IFor notational convenience, I will drop the wedge product and write dz‘dz’ in place of dz’ Adz?. T will also simply

write da rather than da’( - ), although it is still implied that the dual basis elements act on basis elements (of the
tangent space).

@ — k- B=—




Plugging (lll) into (HN),

. oek) [ OV(x) .
X = 7k [ o ex X Bl xQ
= 8;(15) + 0‘(;}(?) x Q—[ex(©2-B) — B(ex - Q)] (BAC-CAB Rule)
_ Oe(k) OV (x) . _ Oe(k) .
= ok + i Q— |ex(©2-B)—B(e 7K Q) (equation (HH)).
This rearranges to
. _ Oe(k) OV (x) Oe(k)
x(1+eB-Q) = Ik + I xQ+Ble Ik Q). (7)
The analogous procedure for k yields
. _0V(x)  Oe(k) IV (x)
k(l+eB-Q)=— ¢ ok xB—-Qfe p B). (8)

Now, in part (a) we showed that equations (Hll) and (lll) are Hamiltonian with w as the
symplectic form for any Hamiltonian of the form H(x,k) = e(k) 4+ V(x). We can then easily
relate the time derivatives of functions with the Poisson bracket with a Hamiltonian function
vi

{Hi,H)} & % . = Hj. (9)

Or equivalently, {f, H} = —f (since {f,g} = —{g, f}).

The computation of the Poisson brackets follows immediately. Choosing f = x; and H = x;,
equation (M) yields
et — g Gk
{wi, 25} = =i = (1+eB-Q)
The remaining two Poisson brackets follow by the same procedure but with the Hamiltonian

function H = k;. Summarizing, one finds
Eiijk (5,']' + eBin E,’jkeBk
L= T T o ’iuk' = kluk = 7T 1 o
et =—aiay Wh="grma WM -GiE.9

(c) The conserved phase-space volume w?/3! can be computed by direct calculation. Note that

terms like dz’ A dz? A dz® A daz* vanish since necessarily there will be one repeated index for

2See equation (11.96) in the textbook. Also note that the definition given here and in the textbook differs by a
minus sign from the traditional one. The literature is sometimes inconsistent with which definition is used, so it is
always worth checking the convention used.



three spatial dimensions (an analogous argument holds for the k’s). Hence

. . . . . . -/ -/ ! 1 =/ =/ 1"
W = doidkidad dk? da® dk* + 3)(dkida?) <—§e,~/]—/k/BZ da?’ ) <§ei,,]—,,km@ Ak diF )
= dk'dk k" dz" da’ dk* — 3!2 (EJkEJkBQ> i da’da?’ da® dk?” di”

=31+ (eB - Q)] dk'dk*dk3da' da?da?,

which implies w?/3! = (14 eB - Q)d*kd>z, as desired.

3 Non-abelian Gauge Fields as Matrix-valued Forms
(i) Given A = A, dx", write

24% = A A detde” + A A datde” = (A A, — AJA,)daH da”

— A2= (A, Ay)dxtda”,

1
2
where in the last equality I've used dx*dzx” = —dz”dx* and relabeled indices. Similarly, one

finds dA = £(9, 4, — 9,A,,)dz"dz”, so that

F=dA+ A% = (0,0, — 0,A, + [A,, A)]) dz'da”.

=F

(ii) Using the definition of the gauge-covariant derivatives,
Vu=0,—A4A,,
one finds

Vi, V| =V, V, -V, V,
= (au - Au)(av - Au) - (81/ - Au)(au - Au)

= 0,0, + (0,A)) + A0y + A0, + A A (expand and cancel)
— 0,0, — (0,A,) — A0, — A0, — AJA,

= (OHA,,) - (8,,14“) + AuAV - AVAH
=0uA, — 0AL+ [AL, A
=F (by part (i)).

(iii) Let g be an invertable matrix and d¢g be a matrix describing a small change in g (we assume



g + 0g is still invertable).

(g+69) (g  +3(g7") =id = gg ' +9(3g)"" + (69)g™* + (39)d(g™") = id
=id 0(52)

= (8g)"' =—g "(6g9)9".

Alternatively, by demanding there is no variation in the identity, we find 0 = 6(gg~!) =
(09)g" +gd(g™") = d(g7") = (09)~" = —g~ " (dg)9 .

Suppose that the matrix-valued gauge field is a “pure gauge”; i.e., that A = g~'dg. Then
_ _ _ _ _ -1
dA =d(g~'dg) = d(g~")dg = —g 'dg g~ 'dg = (g7 'dg) .

This shows that
F=dA+ A?=— (g_ldg)2 + (g_lalg)2 =0,

as desired.

Under a gauge transformation,
Au = A}Z = g_lAug + g_l(au )
Therefore, the covariant derivative transforms like
V= Vﬁ =0, + AZ = g_lgau + g_l(ﬁug) + g_lA“g = g_1(8u + Au)g.

In the last equality, we have used the fact that the derivative acts to the right along with the
chain rule (in reverse). Hence, V, — g_lvug under a gauge transformation. Using the result

from part (ii) (Fj = [V, V,]), we can easily find how F},, behaves when transformed.
Fu=uV)=[9'Vu,0 Vg =9V, Vg =g ' Fug,

as desired.

To show the Bianchi identity, we simply take the exterior derivative of F'.

dF = d(dA + A?)

= PA + (dA)A — A(dA) (d? =0)
= (F — A)A — A(F — A?) (dA = F — A?)
— FA— AF.

This rearranges to dF' — FA 4+ AF = 0, as desired.



(vii) Next, use the Bianchi identity to show that the 4-form is closed.

dtr(F?) = tr(dF?) (dtr =trd)
= tr((dF')F + F(dF))
=tr((FA— AF)F + F(FA — AF)) (Bianchi identity)
— tr(EAF — AFF + FFA — EAF)
—tr(AFF) + tr(AFF) (cyclic perm.)
=0.

Note that in this case the cyclic permutation of matrix-valued forms is also even so that this

operation doesn’t change the sign in the wedge product

tr(FFA) = tr(F,, Fys Ay )datde” doY da® da?
= (=) tr(AyF,, Fs)da dat da” da da®
=tr(AFF).

(viii) Before showing that

first note that tr(A*) = 0 since

tr(A?) = tr(A, A, A, As)dzt dz” dz da®
= (—1) tr(As A, A, AL da’ dat d” da?
= —tr(A%).

In the second equality, we have cyclically permuted matrices under the trace; however, unlike
the product of three matrices in part (vii), this is obtained via an odd permutation which
introduces a minus in the 4-form. With this, we can show (lll) beginning from the right-hand-
side.
=1 A%(dA)+5(dA)A?
d {tr (AdA + §A3> } = tr {(dA)2 - § [(dA)A® + A(dA)A+A*(dA)] }

=tr {(dA)? + A*(dA) + (dA)A® + (A*)*} (tr(A%) = 0)

=tr {(dA + A2)2}

=tr {F 2} .

Hence tr(F?) is also exact. In the first line, I've used the cyclic property of the trace to write

3 Again, the wedge product is implicit.



A(dA)A in a symmetric way.
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