ALGORITHMIC PERSPECTIVE ON STRONGLY CORRELATED SYSTEMS

Lecture: Introduction to Matrix Product States

Fall 2015
Professor: Bryan Clark

Last Time: Exact Diagonalization \rightarrow Matrix Product States

Today: More Matrix Product States

$$
\left\langle\Psi \mid \sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n}\right\rangle=M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}
$$

Overlap: $\langle\Psi \mid \Psi\rangle$

$$
\begin{aligned}
& \sum_{\sigma_{1}, \sigma_{2}, \ldots \sigma_{n}}\left\langle\Psi \mid \sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n}\right\rangle\left\langle\sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n} \mid \Psi\right\rangle \\
& =\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n}}\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)^{T} \\
= & \sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n}}\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)\left(M^{\sigma_{n} T} M^{\sigma_{n-1} T} M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T}\right) \\
= & \sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n-1}} M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n-1}} \sum_{\sigma_{n}}\left(M^{\sigma_{n}} M^{\sigma_{n} T}\right) M^{\sigma_{n-1} T} M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T} \\
= & \sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n-2}} M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots\left(\sum_{\sigma_{n-1}} M^{\sigma_{n-1}} A M^{\sigma_{n-1} T}\right) M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T}
\end{aligned}
$$

Overlap: $\langle\Psi \mid \Psi\rangle$

Overlap: $\langle\Psi \mid \Psi\rangle$

Overlap: $\langle\Psi \mid \Psi\rangle$

Overlap: $\langle\Psi \mid \Psi\rangle$

Overlap: $\langle\Psi \mid \Psi\rangle$

Suppose I want to start in the other direction?

$$
\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n}}\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)\left(M^{\sigma_{n} T} M^{\sigma_{n-1} T} M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T}\right)
$$

$\operatorname{Tr}\left[\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n}}\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)\left(M^{\sigma_{n} T} M^{\sigma_{n-1} T} M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T}\right)\right]$
$\operatorname{Tr}\left[\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{n}}\left(M^{\sigma_{n} T} M^{\sigma_{n-1} T} M^{\sigma_{n-2} T} \ldots M^{\sigma_{1} T}\right)\left(M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}\right)\right]$

Canonization $\left\langle\Psi \mid \sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n}\right\rangle=M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}$
Gauge Freedom: $\quad M^{\sigma_{1}} U U^{\dagger} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}$

Q: How should we use our gauge freedom?

$$
U^{\uparrow T} U^{\uparrow}+U^{\downarrow T} U^{\downarrow}=I
$$

(left canonical)

Canonization $\left\langle\Psi \mid \sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n}\right\rangle=M^{\sigma_{1}} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}$
Gauge Freedom: $\quad M^{\sigma_{1}} U U^{\dagger} M^{\sigma_{2}} M^{\sigma_{3}} \ldots M^{\sigma_{n}}$

Q: How should we use our gauge freedom?

$$
\begin{array}{|c|c|}
\begin{array}{|c|c}
\hline 4 \times 4 & 4 \times 4 \\
M^{\uparrow} & M^{\downarrow} \\
\hline 4 \times 8 & U \\
(4 \times 4)(4 \times 4)(4 \times 8)
\end{array} .
\end{array}
$$

SVD

$V^{\uparrow} V^{\uparrow T}+V^{\downarrow} V^{\downarrow T}=I$
(right canonical)

Mixed canonical

Matrix Product Operator

$\left\langle\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5}\right| H\left|\sigma_{1}^{\prime} \sigma_{2}^{\prime} \sigma_{3}^{\prime} \sigma_{4}^{\prime} \sigma_{5}^{\prime}\right\rangle$

