
ALGORITHMIC PERSPECTIVE 
ON STRONGLY CORRELATED 

SYSTEMS



Last Time: Your first QMC code.
But…  we made assumptions that everything was positive.

Q: What do we do when these assumptions are not correct.

Guess a wave-function, compute it’s properties. 

E =

R
| (r1, r2, ..rn)|2 [H ](R)

 (R) dR
R
| (r1, r2, ..rn)|2dR

O =

R
| (r1, r2, ..rn)|2O(R)R
| (r1, r2, ..rn)|2dR

Once we have a wave-function, we need to ‘simply’ compute the 
following integrals.

Note: These are integrals in thousands of dimensions!



We want to compute some property 

Integrate by grid

8 bars 91 bars

error:        for trapezoid rule

L points per dimension - grid cube size h = 1/L

h2

time: LD

✏�D/2time for fixed error:

hOi =
Z | (R)|2O(R)dR

| (R)|2dR

Even if we have the function (vector) this is not helpful. 

and we have the vector or function.

How do we do it?



(Improved) Integration by Grid

Trapezoid Rule:
✏ ⇠ f

(2)(x)h2

Simpson’s Rule: ✏ ⇠ f

(4)(x)h4

... Rule: ✏ ⇠ f

(↵)(x)h↵

Total Time: T ⇠ ✏�D/↵



Monte Carlo!!

Configuration Space: {R}

Location of the electrons

Probability: | (R)|2

Instead of doing integration exactly, we should use Monte 
Carlo!



Sample x with probability           to compute  

time for fixed error: ✏�2

10 times the error bar (one decimal point)  =>  100 times the work

But still wins for D>4 (trapezoid rule)
D > 2↵

Stochastic Integration

p(x)

R
p(x)f(x)dxR
p(x)dx

p(x) need not be normalized

(generally)

(We’re hiding a variance)





A simple goal: sample a probability distribution ⇡(R)

Markov Chain A graph with (directed) edges and probability to move between 
them. 
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Q:  Suppose I walk around this graph.  
 
After 1000 steps, what is the 
probability I am on a red node?
 
After 5000 steps, what is the probability 
I am on a red node?
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⇡(2) = ⇡(1)P [1 ! 2] + ⇡(2)P [2 ! 2]

⇡(1) = ⇡(1)P [1 ! 1] + ⇡(2)P [2 ! 1]

Stationary State: Marbles in = Marbles out



⇡(2) = ⇡(1)P [1 ! 2] + ⇡(2)P [2 ! 2]

⇡(1) = ⇡(1)P [1 ! 1] + ⇡(2)P [2 ! 1]

⇡j =
X

i

Pji⇡i

This is matrix multiplication

⇡ = P ⇡

Q:  Is their a fixed point?

Q:  How many fixed points?

Q:  Do you approach a fixed point?



⇡(2) = ⇡(1)P [1 ! 2] + ⇡(2)P [2 ! 2]

⇡(1) = ⇡(1)P [1 ! 1] + ⇡(2)P [2 ! 1]

⇡j =
X

i

Pji⇡i

This is matrix multiplication

Q:  Is their a fixed point?

Q:  How many fixed points?

Q:  Do you approach a fixed point?

Consider the eigenvectors of P

vP = ✏vP

Suppose you are in an eigenvector of P with |✏| < 1

Suppose instead  you are in an eigenvector of P with |✏| = 1

How many of those can there be?

Suppose you start somewhere else?



⇡(2) = ⇡(1)P [1 ! 2] + ⇡(2)P [2 ! 2]

⇡(1) = ⇡(1)P [1 ! 1] + ⇡(2)P [2 ! 1]

⇡j =
X

i

Pji⇡i

This is matrix multiplication

⇡ = P ⇡

Q:  Is their a fixed point?

Q:  How many fixed points?

Q:  Do you approach a fixed point?

yes

1 (usually)

yes

Q:  What’s going on with molecular 
dynamics?

Q:  What about if I only walk right?



Eigenvalues
Pnv = Pn[↵0v0 + ↵1v1 + ↵2v2 + ...]

= [✏n0↵0v0 + ✏n1↵1v1 + ✏n2↵2v2 + ...]

If v is a probability distribution:

If v0 has negative terms in it, eventually that term will dominate and go negative.

(WLOG, order by size of eigenvalues)

No term can go negative. 
The state has to stay normalized

If it has all positive terms and              eventually it will not be normalized|✏0| > 1
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Eigenvalues
Pnv = Pn[↵0v0 + ↵1v1 + ↵2v2 + ...]

= [✏n0↵0v0 + ✏n1↵1v1 + ✏n2↵2v2 + ...]

If v is a probability distribution:

(WLOG, order by size of eigenvalues)

No term can go negative. 
The state has to stay normalized

If               you have a limit cycle.  Choose uniform superposition over cycle.✏0 6= 1



Eigenvalues
Pnv = Pn[↵0v0 + ↵1v1 + ↵2v2 + ...]

= [✏n0↵0v0 + ✏n1↵1v1 + ✏n2↵2v2 + ...]

If v is a probability distribution:

(WLOG, order by size of eigenvalues)

No term can go negative. 
The state has to stay normalized

Suppose there are two stationary states...



Q:  How do we set up a Markov chain with a 
particular distribution?

A: Metropolis
Starting at node i

Pick a node j with probability T(i,j)

Move to j with probability 

min

✓
1,

⇡(j)

⇡(i)

T (j ! i)

T (i ! j)

◆
Q:  Why does this work?

Metropolis



Q:  Why does this work?

P (i ! j) = T (i ! j)min

✓
1,

⇡(j)

⇡(i)

T (j ! i)

T (i ! j)

◆

P (j ! i) = T (j ! i)min

✓
1,

⇡(i)

⇡(j)

T (i ! j)

T (j ! i)

◆

Q:  How do we set up a Markov chain with a 
particular distribution?

A: Metropolis
Starting at node i

Pick a node j with probability T(i,j)

Move to j with probability 

min

✓
1,

⇡(j)
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◆

Metropolis



Examples:
* Uniform hopping on a line 

* Greater probability on one node

* Moving right more then left (how about always moving left?)

* Metropolis with a barrier (how to fix?) 

* Uniform hopping on a hypercube



Some intuition...

T [1 ! 2] = 0.9

⇡[1] = 0.25 ⇡[2] = 0.25

T [2 ! 3] = 0.9 T [3 ! 4] = 0.9

T [4 ! 3] = 0.1
T [3 ! 2] = 0.1T [2 ! 1] = 0.1

Q:  Why doesn’t it flow away?

Q:  What’s the probability to go right?

P (1 ! 2) = T (1 ! 2)min

✓
1,

⇡(2)

⇡(1)

T (2 ! 1)

T (1 ! 2)

◆

Build the graph...

P (1 ! 2) = 0.9min

✓
1, 1

0.1

0.9

◆
= 0.1

P (2 ! 1) = T (2 ! 1)min

✓
1,

⇡(1)

⇡(2)

T (1 ! 2)

T (2 ! 1)

◆

P (2 ! 1) = 0.1min

✓
1, 1.0

0.9

0.1

◆
= 0.1



A comment about mixing times...



The variational principle
E[ (r1, r2, ...rn)] � E0

E[ 0(r1, r2, ...rn)] = E0

Let’s just guess the ground state.

More refined:  Let’s guess many states and assume the one with the 
lowest energy is the best guess.

Important steps:

2.  What wave-functions?

3.  How to optimize?

1.  How to compute energy?



Start in location R for the electrons

Choose a new location R’ 

If | (R0)|2/| (R)|2 > rand()

use R’

else:
keep R

Measure:

H (R)

 (R)

Variational Monte Carlo


