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Abstract

Quantum communication provides several examples of communication protocols which cannot be imple-

mented securely using only classical communication. Currently, the most widely known of these is quantum

cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an

eavesdropper. This thesis explores and extends the realm of quantum communication.

Two new quantum communication protocols are described. The first is a new form of quantum cryp-

tography—relativistic quantum cryptography—which increases communication efficiency by exploiting a

relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions

intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication

efficiency over a similar protocol not utilizing relativity.

A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific

direction in space. This application shows the possibility of using joint measurements, or projections onto

an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit

communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint

measurements can improve the efficiency to 78.9%.

In addition to implementing these protocols, we have improved several resources for quantum communi-

cation and quantum computing. Specifically, we have developed improved sources of polarization-entangled

photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator.

These tools may be applied to a wide variety of future quantum and classical information systems.
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polarizing beam splitter (PBS) in each arm, enabling an arbitrary projection on each qubit.
This allows him to make the separable measurement for orienteering, and also to perform full
state tomography [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 For all four protocols, each of the directions indicated on this polar plot of the surface of
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Chapter 1

Introduction

Quantum information is the study of communication and computation systems that utilize quantum re-

sources such as entanglement (joint states of separated particles) and superposition states (states such as

|0〉 + |1〉 which have an amplitude to be in one of several states, and with a well defined phase between

them). Since the beginning of (classical) information theory, it has been known that the number of steps

to complete a computation depends on the model of a computer used. However, the strong form of the

Church-Turing [3] thesis suggests that the classical Turing machine is the universal computer, able to com-

pute any decidable function in the most efficient manner possible, up to polynomial time transformation.

While there is no known machine that outperforms a Turing machine using only classical physics, computers

that store their state in quantum bits (qubits) and perform gate operations using unitary operators may

be able to efficiently solve problems that Turing machines require exponentially more time to solve. For

instance, Shor’s algorithm [4] allows a quantum computer to factor large numbers in polynomial time, while

the fastest known classical algorithms are super-polynomial [5]; however, the true classical complexity of

factoring is not known. Grover’s algorithm [6] allows a quantum computer to search an unordered list in

O(
√
n) operations, asymptotically faster than any classical computer (which requires O(n) operations).

While quantum computation allows some functions to be computed faster than is possible with classical

computers, the class of “decidable” functions is the same. Certain problems such as the halting problem

(determining whether or not a given problem will ever finish executing) are known to be unsolvable by

classical computers, quantum computers are also unable to solve these problems. In principle, given enough

time and memory, a classical computer can simulate a quantum computer, allowing it to evaluate any

quantum algorithm. Quantum communication, the branch of quantum information involving more than

one party, actually allows protocols that cannot be implemented using purely classical resources. The best

known protocol of this type is quantum key distribution (QKD). This protocol allows two parties, Alice and

Bob, to generate a shared secret key — a random string of bits on which they perfectly agree, yet which

an eavesdropper has essentially zero knowledge of. Classical, this can only be done with a physically secure

communication medium, usually regarded as requiring Alice and Bob to meet in person to exchange keys.
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QKD allows Alice and Bob to make this exchange over a quantum channel, even if it is controlled by the

eavesdropper.

QKD is currently the most widely known and implemented quantum communication protocol; however,

there are other classical communication protocols that may be implemented or improved upon by allowing

quantum resources, including bit-string commitment [7], the Byzantine General’s problem [8], fingerprint-

ing [9, 10], and others. Beyond these fundamentally classical protocols, there is another type of quantum

communication, that is, using protocols that directly operate on quantum information. In particular, quan-

tum teleportation [11] and quantum repeaters [12, 13] may become important in the future for connecting

quantum computers.

Here we discuss the implementation of novel two quantum communication protocols. The first is relativis-

tic quantum cryptography (Chapter 5). This protocol uses constraints from relativity in order to improve the

efficiency of communication by excluding eavesdropping strategies that violate causality. Ordinarily, Alice

and Bob must randomly select a communication basis for each photon transmitted. The selection process

must be random, since it must be impossible for an eavesdropper to predict which basis they will choose.

Unfortunately, the cases where Alice and Bob do not randomly select the same basis must be discarded, in a

process known as sifting. In our relativistic protocol, Bob does not have to select his basis until after Eve can

no longer access the signal, allowing him to eliminate the sifting step and improving the total communication

efficiency.

The second quantum communication protocol is quantum orienteering (Chapter 6). This protocol allows

the communication of a direction in space without reference to an external reference frame, a process im-

possible with “pure” information. Instead, the protocol relies on the specific physical embodiment of the

information. In particular, we show that when a direction is encoded into multiple spin-1/2 particles, or in

our case, two photons treated as effective spin-1/2 particles, the measurement which gives the most informa-

tion is a joint measurement. Such measurements project onto an entangled state, rather than independently

measuring each copy of the state. Perhaps more surprising is that specific encoding matters: two parallel

spins provide less information than a pair of anti-parallel spins, though classically these two encodings are

equivalent.

We used several tools developed to allow these and other quantum information protocols to be imple-

mented, including a bright, pure source of polarization entangled photons (Chapter 2) used by both protocols.

This source uses a pair of type-I non-linear crystals. When pumped with an appropriate UV laser, one crys-

tal generates pairs of horizontally polarized photons (|HH〉), while the other generates pairs of vertically

polarized photons (|V V 〉). If the light from the these two crystals is combined such that the processes are

2



quantum mechanically indistinguishable (i.e., it is not possible to tell, even in principle, from which crystal

a photon is emitted), then the resulting state is an entangled state of the form cos(θ)|HH〉+ eiφ sin(θ)|V V 〉,

which can be converted into many desired entangled states.

In Chapter 3 we describe a low-loss quantum storage system based on an optical delay. We use this delay

line to implement relativistic quantum cryptography. The delay is created by reflecting photons between

a pair of mirrors many times before the photon exits a small hole in one of the mirrors. Our design uses

cylindrical mirrors in order to generate very long delays (up to 7 µs in a 2-meter long cavity). While this

sort of delay lacks some features of potential systems that transfer an optical state onto an atomic system

and back, such as continuously controllable delay and very long storage times, our delay line technique also

has considerable advantages. In addition to its relative simplicity, it is broad band, polarization preserving,

and can store many photons at once in different time slots or spatial modes.

Finally, we have developed a high-speed random number generator (Chapter 4) suitable for use in quan-

tum cryptography applications. We generate random bits using the inherent unpredictability of photon

detection as a source of randomness by measuring the arrival time to several digits of precision. The major

advance with our design is that we can generate multiple random bits per detected photon, in contrast to

previous designs which generate at most a single random bit per photon. The disadvantage to this approach

is that the output shows bias – some values are more likely than others; however, we eliminate this with

post-processing by using hash functions, functions that map an arbitrary length input string to a fixed

length output string, to compress the data to an essentially perfectly random sequence. We can generate

random bits after post-processing as fast as 20 Mbit/s out of a single photon-counting detector running at

4 MHz average count rate. The best available true random number generators generate 12 Mbit/s using a

high-speed photo-multiplier tube.

These tools help us to implement multiple quantum communication protocols, and will likely have ap-

plication to future quantum information applications as well. In particular, quantum repeaters, an essential

component of long-range quantum communication, require entangled photons and quantum storage, while

our high-speed quantum random number generator is suitable for many cryptographic protocols and other

applications which consume random numbers at a high rate.
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Chapter 2

Entangled Photon Source

2.1 Introduction

Perhaps the most important resource for quantum communication is the production of entangled photons.

While massive qubits such as quantum dots or trapped ions may in the end be the medium of choice for

quantum computing, quantum communication will probably always rely on optical qubits, which can be

easily transmitted over long distances with minimal interaction with the environment. Optical qubits are

useful not only for long distance communication, but also possibly for interconnect busses within a quantum

computer. Photons have several accessible degrees of freedom; however, we use polarization qubits for

our quantum communication protocols. Photon polarization (spin) forms an effective 2-level system (it is a

massless spin-1 particle, therefore the mz = 0 state is excluded), and it is usual to identify the computational

basis states as horizontally polarized (|H〉) and vertically polarized (|V 〉), relative to an arbitrary standard.

Several of the most useful states are show in Table 2.1. Multi-qubit states can be represented as tensor

products of these sing-qubit states. For instance, two photons, both horizontally polarized can be written

as |HH〉 ≡ |H〉 ⊗ |H〉, and an entangled Bell state as |φ+〉 ≡ (|HH〉 + |V V 〉)/
√

2.

Currently, the workhorse entanglement source is spontaneous parametric downconversion (SPDC). In

this process, a UV pump beam acts on a material having a second-order nonlinearity, such as β-barium bo-

rate (BBO). With some small (∼ 10−10) probability, individual photons from the pump beam will down-

Polarization Notation Equiv. Representation
Horizontal (0◦) |H〉 —
Vertical (90◦) |V 〉 —

Diagonal (45◦) |D〉 |H〉 + |V 〉)/
√

2

Anti-diagonal (−45◦) |A〉 |H〉 − |V 〉)/
√

2

Right-circular |R〉 |H〉 + i|V 〉)/
√

2

Left-circular |L〉 |H〉 − i|V 〉)/
√

2

Table 2.1: All polarization states can be written as a superposition of the computational basis states |H〉
and |V 〉.
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convert into pairs of lower energy photons. Due to the requirement that the process conserve energy and

momentum (also known as phase matching, the requirement that amplitudes for downconversion through

the crystal add constructively in phase), these pairs of photons are potentially entangled in every possible

degree of freedom [14]. This process is particularly useful compared with older entangled photon sources

such as atomic cascades [15, 16], because the phase matching conditions allow the source to be tuned in

frequency and direction by varying the orientation of the non-linear crystal and the pump beam. Thus, the

process can be tuned for a specific application. In later chapters, we will show how this source is used to

implement two new quantum information protocols, Relativistic Quantum Cryptography (Chapter 5) and

Quantum Orienteering (Chapter 6).

2.2 Downconversion

Downconversion is a form of three-wave mixing in which pairs of low-frequency photons are created from

individual high-frequency photons. The high-frequency mode is referred to as the pump, usually provided by

a UV laser, while the two lower-frequency modes are called the signal and the idler. This process requires a

material with a non-linear optical response. In such materials, the electric displacement vector is not simply

proportional to the electric field, but also depends on higher-order terms such as EiEj . These higher-order

terms allow light from different modes (frequency, momentum, and polarization) to interact. Classically,

three-wave mixing requires at least 2 of the modes to be pumped externally. However, quantum mechanics

provides a mechanism that allows the process to occur spontaneously, essentially amounting to stimulation

from the vacuum field in a manner analogous to spontaneous decay in atomic systems.

Non-linear optical processes are classified by their input and output polarizations. Non-linear crystals

must lack inversion symmetry in order to posses a 2nd-order (χ2) non-linearity, and are birefringent (they

have different indices of refraction for different polarization states). In order to generate downconversion

from a given system, the specific non-linear coefficient must be non-zero and the phase matching constraints

discussed below must be satisfied. We use Type-I downconversion, characterized as an eoo process. This

notation indicates the pump is extraordinarily polarized compared to the optic axis of the downconversion

material, while both the signal and idler have ordinary polarization.

2.3 Phase Matching

Each portion of the downconversion crystal illuminated by the pump laser has an amplitude to emit down-

converted photons. However, for most possible wavelength and direction combinations, contributions from
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each part of the crystal cancel. Only when the process (approximately) conserves energy and momentum

within the crystal will the amplitudes combine constructively to give a large signal. This is known as the

phase matching condition, and the maximum phase mismatch depends on the length of the crystals and

the bandwidth of the pump. For Type-I phase-matching, the down-converted photons form a cone centered

on the pump beam. Conditional on a photon being detected on a specific part of that cone, the other is

known to be on the opposite side of the cone. The cone’s apex can be adjusted by tilting the crystal’s

optic axis. This changes the extraordinary index of refraction seen by the pump beam, and therefore the

momentum-conservation condition.

2.4 Entanglement Generation

Photon pairs emitted from Type-I downconversion are automatically entangled in the continuous variables

of frequency and momentum, as a straightforward consequence of the conservation laws. However, the

polarization output from a single crystal is a pure product state: both photons have ordinary polarization.

In order to generate polarization entangled photons, we use two abutting crystals: one with its optic axis

in the vertical plane, which generates horizontally polarized photon pairs from vertical pump photons, and

the other with its optic axis in the horizontal plane, which generates vertically polarized photon pairs from

horizontal pump photons. We pump both crystals with a diagonally polarized pump laser. If the crystals

are sufficiently thin and close together, then due to diffraction it is impossible to tell even in principle which

crystal a given photon pair came from. In this case, to find the output polarization state, the amplitudes

for emission from the first and second crystals are added coherently, to give an entangled output state:

|ψ〉 = cos(θ)|HH〉 + eiφ sin(θ)|V V 〉. (2.1)

The parameter θ depends on the relative amplitude for downconversion from the two crystals, and can be

adjusted by rotating the pump polarization, and φ is the phase between the two processes, dependent on

the exact thickness of the crystals and the birefringent phase accumulated as the light propagates through

them. If necessary, the phase can be adjusted by adding a variable waveplate to one of the output beams.

However, some applications only require a (nearly) maximally-entangled state for which the phase between

the |HH〉 and |V V 〉 terms does not matter. A schematic depiction of this sort of entanglement source is

shown in Fig. 2.1.
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Figure 2.1: Figure showing an example entangled photon source using parametric downconversion. A
vertically polarized pump laser (351 nm Ar+ line) is rotated to diagonal polarization by a half waveplate
HWP. It then traverses two 0.6-mm BBO crystals, with their optic axes in orthogonal planes. The crystals
are cut such that the downconversion emerges in a cone with a 3◦ opening angle. An optional “φ plate” in
one arm is a quarter waveplate (QWP) which is tilted to adjust the phase of the output entangled state. A
QWP, HWP and polarizer in each arm allow state tomography to characterize the emitted entangled state.

2.5 Compensation

In the two-crystal Type-I downconversion system described above, the state emitted by the crystals varies

slightly with direction. The primary difference is in the phase φ in the state |HH〉+ eiφ|V V 〉. The photons

emitted in the first crystal travel through the second crystal with extraordinary polarization, and acquire a

phase associated with the path length through the crystal and its index of refraction, which in turn depends

on the direction of propagation due to the birefringent nature of the crystal. When the collection irises

subtend a large solid angle, this phase variation across the collection aperture effectively causes decoherence,

degrading the quality of the state. In the BBO source described above, we typically use irises with a diameter

of 5 mm, at a distance of 1200 mm from the crystals (14 arcminutes). In this arrangement, the phase of the

emitted entangled state varies by about 70 degrees across the iris, causing significant loss of state quality.

In order to improve the quality of the state, we add an extra birefringent element into each arm of the

downconversion, thereby canceling this phase variation over the width of the iris to first order [1]. The result

is a considerably brighter, more pure source of polarization entangled photons than was previously available.

2.6 Fiber Coupling

For some applications, including our quantum key distribution (QKD) experiment described in chapter 5,

it is more desirable to have entangled photons in fiber optics, at least for part of the transmission channel.

The basic operation of the source is the same; however, the signal and idler have different wavelengths, one

at 670 nm (to match laser diodes also used in the experiment) and the other at 737 nm (required by energy
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conservation). We also used a different non-linear crystal, BiB3O6 (BiBO), which has a higher non-linear

interaction coefficient, making it a brighter source. In order to preserve entanglement through the fiber

optics, we must use single-mode fibers, otherwise the phase shift between different modes in a multi-mode

fiber will degrade entanglement. A schematic of our fiber-coupled entanglement source is shown in Fig. 2.2.

In order to get a high coupling efficiency for the fiber-coupled source, we must focus the pump to a small

spot in the downconversion crystals [17]. Since this source is non-degenerate — the emitted downconversion

photons are at different wavelengths — we can use collinear downconversion. In that configuration, the

“cone” collapses to a beam, with both photons emitted in the same direction as the pump. Beam-like

modes are easier to couple into fiber, but first we must use a laser cutoff filter to block the pump, and a

dichroic mirror to separate the two colors of downconversion. Each color is then collected into a single-mode

fiber using a microscope objective. We can perform a quantum state tomography on the output from the

fiber optics to verify that entanglement is preserved. However, bends in fiber optics do induce polarization

rotations due to geometric effect (e.g., Berry’s phase [18]) and stress-induced birefringence. Thus, the output

state will not be the clean |HH〉 + |V V 〉 state emitted by the crystals, but one which has undergone some

local-unitary rotation on each polarization qubit. This rotation can be undone using waveplates if necessary;

however, a more difficult problem is that the rotation, and therefore the output state, will drift as the fiber

moves and the temperature changes. Such drift is a serious problem for our applications, so we reduced it

by taping the fiber to our optical tables to keep them held in place and connected to a thermal reservoir.

The resulting entangled state can be stable for days at a time; we simply perform a state tomography at the

beginning of data collection, and the drift throughout the course of an experiment is minimal.

It is also necessary to use fibers without a large protective jacket, as the fiber is usually able to twist

inside the jacket. Over time, the fiber will gradually relax within the jacket after any movement, requiring

hours or days to reach a stable configuration. Fiber patch cords are commonly available with 3-mm and

0.9-mm jackets, and we have observed that the latter seem to work considerably better for entanglement

distribution.

2.7 Tomography

To show that the source of entangled photon pairs is indeed generating entanglement, it is sufficient to mea-

sure a violation of Bell’s inequality [19, 20]. However, for most applications of entanglement it is important

to know the exact state produced. To do this, we use a process known as quantum state tomography [2, 21].

Tomography is the mathematical reconstruction of the complete density matrix from a series of projective
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Figure 2.2: Fiber-coupled source of polarization entangled photons. Here, the downconversion is collinear
with the pump, and the signal and idler are separated by wavelength using a dichroic mirror before coupling
into single-mode fibers. To achieve high coupling efficiency, we focus the pump beam to a small spot in the
crystals.

measurements, each of which provides partial information about the quantum state.

The two-qubit state of photons emitted by our SPDC source is most completely represented by a 4 × 4

density matrix. This form can not only represent standard pure quantum states, but also mixture caused by

e.g., entanglement to other degrees of freedom. The expectation value for a specific projection (|ψ〉), given

the density matrix representation (ρ) of a state is given by:

P (ψ) = 〈ψ|ρ|ψ〉. (2.2)

Since the 4 × 4 density matrix is Hermitian and has unit trace, there are 15 free parameters, so we need

to perform at least 15 different measurements. In practice, we require 16 unique measurements in order

to normalize the intensity of our source. The usual choice for a 16-measurement state tomography is to

measure every combination of |H〉, |C〉, |D〉, and |R〉 on each qubit, for a total of 16 measurements. These

data are then used to predict a density matrix that would generate those outcomes. In practice, the results

are subject to statistical fluctuations of a Poissonian nature, and may not always exactly reflect a legal (i.e.,

positive semi-definite) density matrix. Therefore, we use a maximum likelihood optimization [2] to find the

best fit density matrix.

While it is most obvious to use the 16 measurements listed above to do state tomography, we have shown

that it is not optimal in the sense of minimizing the uncertainty with a given number of state copies. We

do considerably better by taking 36 separate measurements, the combinations of projections onto |H〉, |V 〉,

|D〉, |A〉, |R〉, |L〉 for each photon [21]. All 36 measurements are then used in the maximum likelihood

optimization. The reason for this advantage is that the density matrix is a representation of a probability of

a given outcome. To get a probability from the data we take, each measurement, consisting of a number of

9



coincident detections, must be divided by the total rate of production. In the 16-measurement tomography,

the intensity is given by the sum of four measurements: HH+HV +V H+V V . Thus, those 4 measurements

of the 16 strongly affect every element of the density matrix, while the other 12 only affect a single parameter.

By using the more balanced set of 36 measurements, each measurement contributes to our knowledge of the

intensity, and thus decreases the uncertainty of the reconstructed density matrix.
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Chapter 3

Optical Storage Cavity

Optical qubits have excellent properties for quantum communication, since they travel at the speed of light

and are essentially impervious to electric and magnetic fields. Unfortunately, this makes them hard to store

for processing, and they are susceptible to absorption in normal media. For many quantum computation

applications, it is desirable to convert the “flying” optical qubit into a stationary (e.g., atomic) qubit. For

some applications, however, only a brief storage time is necessary. This is the case for relativistic quantum

cryptography, as well as some implementations of quantum repeaters and feed-forward control in optical

quantum computing. In these applications, it is more convenient to store the photon directly rather than

converting it to a stationary qubit and back. The simplest approach to store a photon for a brief period

is to reflect it back and forth between mirrors in a cavity configuration. Two meters is a reasonable size

for a tabletop cavity, giving a base delay time of t0 = 6 ns per reflection. Even the finest mirrors will have

some loss on each reflection, with the total storage efficiency for time T given by η ≈ RT/t0 where R is the

reflectivity of the mirror. Assuming an arbitrary ruler of useful storage as 50% efficient and a commercially

available mirror with 99.99% reflectivity, we can tolerate nearly 7000 reflections yielding greater than 40 µs of

storage time, a virtual eternity for modern computer systems. This is equivalent to 0.25 dB/km in vacuum,

or 0.4 dB/km through glass, which is competitive with the best single-mode optical fibers, and considerably

better than fibers can achieve for visible light.

There are a number of approaches to folding an optical path into a small volume. Conceptually the

simplest approach is to build a single loop with a switching element, such as a Pockels cell. Figure 3.1 shows

a schematic of this type of storage, in which a photon or pulse can be stored for an integer number of loop

times, then switched out by an electrical signal. This approach is not useful for long storage times, however,

since the loss in even a very good switch will be ∼ 1%. This particular implementation also suffers from the

drawback that the polarization degree of freedom is used to control the switching behavior, meaning only a

single polarization can be stored. More complicated switches, such as interferometric switches, allow storing

arbitrary polarizations, typically with higher loss. Nevertheless, this simple delay can be combined with the

approaches below to create a low-loss storage loop that can reach very large, adjustable delays.
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Figure 3.1: A simple switchable delay line. Photons are switched into and out of the cavity loop by means
of a Pockels cell that rotates the polarization between horizontal polarization, which is transmitted by the
polarizing beam-splitter (PBS), and vertical polarization, which is reflected out of the cavity by the PBS.

A better approach to optical storage is to use a pair of spherical mirrors in a cavity configuration as

shown in Fig. 3.2. A small hole is drilled in one of mirrors, and they are arranged so that light entering the

hole can bounce back and forth many times before exiting the same coupling hole. Once inside the cavity,

the light only bounces off of mirrors, which can be made highly reflective, and avoids transmissive elements,

which typically have higher loss. The curvature of the mirror surfaces acts both to keep the beam confined

within the cavity volume and to periodically focus the beam to keep diffraction losses from becoming too

large. In order to have high efficiency, some parameters must be optimized. First, the coupling hole must

be large enough to pass the incident beam without noticeable clipping. The “πw0” criteria [22] states that

a hard aperture must be approximately three times the full-width 1/e2 of a Gaussian beam in order to pass

99% of the beam (a 1% loss can be tolerated here as it is only encountered twice). While the input beam

can be made small by focusing, it will change due to diffraction and periodic focusing, with the optimal

configuration usually being an input beam with a waist near the center of the cavity and a Rayleigh range

comparable to the length of the cavity. Second, the nearest intermediate reflection must be far enough from

the coupling hole that a negligible amount of light leaks out of the cavity early. Thus, as the number of

passes are increased, the size of the mirror must be increased to allow the pattern of spots to be spread out

enough to avoid leakage losses. Below we will see another approach to deal with this problem.

Optical cavities such as this are analyzed using ray matrices [22] (or ABCD matrices) which describe the

evolution of a paraxial light beam as it traverses the elements of an optical system. Rotationally symmetric
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Figure 3.2: A multi-pass delay line made from spherical mirrors. A photon entering through the hole in one
mirror will bounce several times before exiting through the same hole, tracing out the spot pattern shown
on the right. This delay can have significantly lower loss due to the absence of a switch.

systems have simple behavior, and the action of an optical element is represented as







x′

dx
dz

′






=







A B

C D






·







x

dx
dz






(3.1)

with the same ABCD matrix governing evolution in both the x̂ and ŷ directions. A ray is described by two

parameters, x, the the displacement from the central ray, and dx/dz, the slope of the ray in the x̂ direction.

The change in those parameters due to a specific element is given by multiplying by an ABCD matrix. For a

rotationally symmetric optical system, the evolution in the x̂ and ŷ directions is independent and described

by identical equations (though possibly with different initial values for y and dy/dz).

The two important optical elements, a curved mirror of radius R and a free path of length d are given

by:

M(R) =







1 0

−2/R 1






, L(d) =







1 d

0 1






. (3.2)

Since this evolution is linear, ray matrices from multiple elements are simply multiplied to obtain the ray

matrix for the entire system. By multiplying all the elements encountered in the cavity (two mirror reflections

and two free-space propagators), we can obtain a single ABCD matrix that describes how the beam evolves

through each round trip in the cavity. If after N cycles through the whole cavity the beam returns to the

input hole, the cavity is reentrant with period N , and light entering the cavity will be delayed by t = 2Nd/c.

For moderate delays, it is typical to use spherical mirrors for this purpose. Spherical mirrors are easy to

fabricate, and can be easily coated with very high reflectivity coatings (R > 99.99% high-reflectivity coatings

are available). The ABCD matrix for this cavity is given by:

A = L(d) ·M(R) · L(d) ·M(R) =







1 d

−2/R 1 − 2d
R







2

, (3.3)

and the asymptotic behavior of a beam reflected many times may be understood by examining the eigenvalues
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of A. The solutions to the characteristic polynomial can be written as

λ =
(

1 − x±
√

x2 − 2x
)2

, (3.4)

where the only parameter is a dimensionless quantity x = d/R, the separation of the mirrors divided by their

radius of curvature. If λ > 2, the eigenvalues will be real and one of them will have magnitude greater than

1. In this case, a beam passing into the cavity will eventually escape, as the eigenvalue of the iterated ray

matrix AN becomes exponentially large. On the other hand, if λ < 2, the solutions for complex conjugate

pairs of the form e±iφ. In this case, it is possible for the evolution of a ray through the cavity to be periodic,

returning to its initial condition after an integer number of cycles. This is the desired behavior for our

storage cavity. The cavity will be periodic if the ray matrix satisfies

AN = I,

eiNφ = 1,

Nφ = 2πm. (3.5)

These solutions correspond to the beam spots lying on a circular or elliptical path on the surface of each

mirror. The maximum delay is given with a circular pattern and Nmax = 2πr/δ, where δ is the minimum

spot spacing and r is the radius of the mirror face. Thus, the maximum delay time scales only linearly with

the radius of the mirror used. A better solution would use the entire area of the mirror to achieve longer

storage in the same volume; in this case the number of reflections scales are the square of the mirror size.

To use the entire mirror area, it necessary to break the x − y symmetry. Then, the beam propagation

in the x and y directions will be represented by different ABCD matrices having different eigenvalues e±iφ1

and e±iφ2 , and the entire matrix will only be cyclic when both

Nφ1 = πmx and Nφ2 = πmy. (3.6)

The reason for only requiring a multiple of π rather than 2π is that for these systems we usually place the

coupling hole in the center (x = y = 0) rather than the edge, so the total ray matrix may have either +1

or −1 on the diagonals. For these configurations, the beam will trace out a Lissajous pattern on the mirror

faces, covering much more of the area before exiting, and allowing much longer delay times.

It is much more difficult to construct mirrors having different radii of curvature in two directions, since

they are not surfaces of rotation. In addition, the ratio of Rx and Ry is a critical alignment parameter, and
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Figure 3.3: A multi-pass delay line using cylindrical mirrors to achieve very long delay times. The number of
bounces before exiting the coupling hole is adjusted by varying both the mirror separation and the relative
twist angle. The beam traces out a Lissajous pattern on each mirror, shown to the right, allowing most of
the surface of the mirror to be used, rather than only the perimeter.

manufacturing tolerances are usually not good enough to get reliable results. One common approach is to

bend spherical mirrors into the desired astigmatic shape. This works acceptably for metal mirrors used in

infrared applications, but is not practical for glass mirrors with dielectric mirror coatings. Furthermore, this

generates systems with a relatively small astigmatism, which leads to many near approaches to the coupling

hole. More desirable configurations require greater differences in curvature. A second approach is to use

mirrors with an x vs. y curvature difference greater than desired, then twist one of the mirrors slightly to

compensate. This allows the more desirable configurations, and solves the manufacturing tolerance problems;

however, it does not address the difficulties in creating astigmatic mirrors of sufficient quality. We designed

a more effective system using a twisted cylindrical mirror cavity (Fig. 3.3), which allows the entire range

of cavity configurations and uses mirrors that are somewhat easier to fabricate. If a cavity of this type is

built with two cylindrical mirrors whose axes of curvature are aligned in orthogonal directions, we obtain a

configuration very similar to that with spherical mirrors, since the cavity looks similar (it has the same total

focusing power) in the x and y directions. As one mirror is twisted around the cavity axis, this symmetry

is broken and the eigenvalues split, leaving a system very similar to that with astigmatic mirrors.

Since this twisted cylindrical cavity not only has different behavior in the x and y directions, but coupling

between them, it cannot be described by either a single 2x2 ABCD matrix, or separate matrices for each

direction. Instead, we must use a 4x4 matrix which can represent an arbitrary collinear system. The basic

ray matrices we need to describe our cylindrical cavity are: a propagator L(d), which gives the evolution

for propagation through free space; a mirror M(rx, ry), for reflection off a mirror with radii of curvature rx

and ry; and a rotator, R(θ) which gives a coordinate transform used to allow orientation of mirrors with
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non-orthogonal axes. The formulas for these matrices are:
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giving a total ABCD matrix equation of
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We used numerical methods to solve the eigenvalue equation. Again, since this is a real matrix, the eigen-

values for stable solutions come in complex conjugate pairs, and we search for solutions with θ1 and θ2

satisfying Eqn. (3.6). A plot of all solutions for 40 ≤ N ≤ 120 is shown in Fig. 3.4.

It is simple to perform a numerical search for all solutions of a given N , then simply select the one that

has the best properties. The primary consideration when determining the best configuration is to look for

the nearest reflection to the coupling hole to be as far as possible from it. This not only prevents loss from

either leakage through the coupling hole or from imperfections in the optical coating near the hole, but is

typically less sensitive to alignment. If the nearest approach is relatively far, small perturbations in the

mirror alignment will not move to a lower-pass configuration.

We use cavities of this sort to implement relativistic quantum cryptography. However, they may have

other applications in quantum information, including feed-forward error correction [23] in optical quantum

computing and quantum repeaters [12, 13] for entanglement distribution, which require switchable storage.
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Figure 3.4: A plot of stable, periodic cavity solutions. The adjustable parameters are the relative twist of
the second mirror and the ratio of the separation of the mirrors (in units of the radius of curvature). If the
two mirrors have slightly different curvatures (e.g., due to manufacturing variation), most of the solutions
will still work with slight adjustment, although the degenerate case, where θ = 0 and mx = my, is no longer
accessible.
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This system has many advantages over more complicated systems. It is inherently broad-band, since high

reflectivity (HR) mirror coatings typically operate well over tens of nanometers, i.e., very broad compared

to atomic line widths. Furthermore, the center wavelength can easily be tuned to match any desired center

wavelength; for instance, a cavity could be constructed to match the entire 1.5 µm telecom band, or whatever

atomic lines are needed for other parts of a communication system. Moreover, when properly aligned, the

cavity is reentrant for any input k-vector that does not immediately escape confinement, giving an almost

equal delay. Thus, a single cavity can store many photons multiplexed in space and frequency, and pipelined

in time.

High quality mirrors with reflectivity greater than 99.999% are available, and are used by projects such

as LIGO [24] and high finesse cavities for atomic quantum information [25]. However, for our cavity the total

storage efficiency as a function of time delay shows a mirror efficiency of only 99.85%. While the difference

is inconsequential for a single reflection, the last 0.1% makes an enormous difference with the large number

of reflections in long storage-time cavities. The primary problem appears to be surface scatter. There are

several possible causes of this, the first of which is buildup of contaminants on the surface of the mirrors.

This is evidently part of the problem, as over time the reflectivity dropped to 99.7%. Cleaning the surface

with standard solvents did not improve the performance; however using OptiClean [26], a polymer product,

which is applied to the surface in liquid form, then peeled off once it solidifies, improved the performance

back to 99.8%, nearly its initial value. This suggests that there is a more fundamental problem with the

surface quality of the mirror substrate. Further investigations are warranted.

Despite the difficulties in obtaining mirrors with the required efficiency, it is possible to create relatively

long photon storage using this technique, and the delay-time is adjustable over a wide range. If the difficulty

in manufacturing cylindrical mirrors of the required reflectivity can be overcome, this could allow for delay

times exceeding 10 µs, which can be useful for a number of quantum information protocols.

State-of-the-art mirrors can have reflectivity as high as 99.9996% [25]. If we could obtain cylindrical

mirrors with this reflectivity, reflection loss would no longer be limiting the storage times, but the density to

which spots can be packed onto the mirror faces would be. For instance, at this level we could tolerate 12000

reflections with only 5% loss and 80 µs storage time. However, that would place 6000 reflections on each

mirror with an average spacing of only 1 mm, which is too close to be useful. If the mirror size were increased

to allow this many spots, it is likely that several other factors would come into play. Contamination of the

surface and scattering from air can be solved by placing the cavity in a vacuum. However, other problems

are harder to solve. In particular, the difficulty of aligning for a particular cavity solution increases with

the number of spots. Alignment and vibration sensitivity would likely be the limiting factors when trying
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to achieve such a long delay. A better way to take advantage of such an efficient storage cell is a hybrid

switched system, using a long storage time that periodically passes through a switch. We have constructed

cells with delay times of up to 5 µs, so that is within the range of achievable alignment, although probably

near the limit, given the particular mirrors we use. If we had mirrors with such a high efficiency, a single

trip through that cavity would have a loss of about 0.3%. Coupling this to an optical switch with a 1%

loss would allow delays switched in 5 µs increments with quite high efficiency. Another way to exploit high

reflectivity mirrors would be to use multiple k-vectors. If the exiting beam is simply redirected back to the

cavity with a slightly different k-vector, the delay time can be extended without using switches. This might

allow long delay times while completely avoiding the losses associated with switches.
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Chapter 4

Quantum Random Number Generator

4.1 Introduction

Many applications require random input. Sources of random numbers can be broadly divided into two

classes. The first of these is the pseudo-random number generators (PRNGs). These sources maintain an

internal state, and from that state use algorithmic means to generate a series of numbers that behave for

some application the same as random numbers. The initial value of the internal state is called a seed, and for

the same seed a given generator will always produce the same pseudo-random sequence. This is a particularly

desirable feature for some applications, such as simulation of stochastic processes, since a simulation can

easily be rerun with the same input to verify its operation. A simple and very common PRNG used in

non-cryptographic applications is the linear congruential generator, defined by the sequence

x0 = seed,

xi+1 = m · xi + b (mod 2N ), (4.1)

which with a carefully chosen m and b will cycle through all of the N -bit values in a random-looking fashion.

Other PRNGs are based on encryption algorithms, making it hard to deduce from the output what the

internal state is, and therefore make it difficult for an attacker to predict the output.

However, by their very nature pseudo-random generators are predictable and contain patterns. For

instance, the linear congruential generator above has a well-known defect when used for many numerical

simulations. successive random numbers are organized into k-tuples, those points will lie on at most 2
N

k

hyperplanes [27]. Therefore, for other applications, especially cryptographic applications where a malicious

agent may try to guess the output of the generator, it is desirable to use the second class, the true random

number generators. True random number generators do not have internal state, but instead sample some

inherently random physical process to generate their output.

True random numbers are particularly desirable for security applications, as the inherent predictability
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in PRNGs can be exploited to circumvent the security protocol. For instance, in secure web transactions a

public-key encryption algorithm is used to exchange a session key, a single-use random string used as a key

for a symmetric encryption algorithm. A potential attacker might try to crack the public-key algorithm to

obtain the session key and decode the message. However, if the session key is predictable because it comes

from a pseudo-random source, the attacker might be able to simply guess the key directly and avoid the

difficult problem of breaking the public-key algorithm.

Quantum cryptography consumes random numbers at a far greater rate. Each cycle requires a two-bit

random number to select from four basis states, (or an average of at least 2.6 bits/cycle to select from six basis

states). Predicting these values would make direct eavesdropping superfluous and undermine the protocol.

Quantum cryptography systems have been demonstrated operating at speeds of up to 1.25 GHz. True

random number generators are not available that operate at this speed, so these systems must use pseudo-

random generators. Proper choice of an algorithm can make discovering the internal state difficult, and the

state can be periodically reseeded by a slower random number source. However, this still presents a potential

vulnerability that is undesirable. Thus there is demand from both classical and quantum communication

protocols to design true random number generators that operate at high speeds.

True random number generators can also be divided into at least two classes depending, on the nature

of the physical system. They can be thermodynamic or quantum. Thermodynamic sources are typified by

Johnson noise sources. In these random number generators, the voltage on a resistor at finite temperature

is measured periodically with positive voltages assigned a “1” and negative voltages are “0”. If the polling

period is sufficiently long, as determined by the circuit characteristics, sequential measurements will be

essentially uncorrelated, and the output can be used as a source of random numbers. Practical considerations,

such as stray capacitance and inductance, limit the frequency of operation to a few kHz, nowhere near the

speed required. Furthermore, there will usually be some bias in the output – either 0 or 1 will be slightly more

likely. Therefore, some processing is needed to remove the bias, further reducing the rate of random number

generation. Several Intel microprocessor chipsets include true random number generators based on thermal

voltage noise [28], while some VIA microprocessors use frequency noise on free-running oscillators [29] to

provide random numbers in the range of 1 Mbit/s. Operating systems such as Linux combine random

data from these sources along with other unpredictable data [30], such as interrupt timing from disks and

keyboards. All of these systems are presumed to be inherently random, but this can be hard to verify.
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Figure 4.1: Random number generator using a pulse of light to generate a single random bit from detection
of a photon. A diagonally polarized photon will be reflected or transmitted by a PBS with 50% probability.
These two outcomes are detected by single-photon counters and assigned values of 0 and 1.

4.2 Optical Random Number Generator

Quantum random number generators use the inherent randomness in a quantum process as their source

of entropy. One of the oldest quantum sources of randomness is radioactive decay [31]. However, this

requires a radioactive source, and higher data rates require more active sources. Sources with short half-

lives will also decay with time, an additional complication. Optical sources can provide very fast source of

randomness. A small LED or laser diode can emit 1016 photons/s, and is small, inexpensive, and safe. Just

as the number of radioactive nuclei decaying in a given second is inherently random, a diagonally polarized

photon incident on a polarizing beam splitter will be reflected or transmitted each with 50% probability in a

completely unpredictable fashion. This suggests the very simple photonic random number generator shown

in Fig. 4.1 [32, 33].

Due to the high rate of photon emission by LEDs, the rate of random number generation from optical

techniques is limited not by this emission rate, but by the capabilities of the available single-photon detectors.

A typical avalanche photo-diode (APD) can run in Geiger mode with an efficiency of 60%, a dead time

between detections of 50 ns, and a maximum count rate of 5 MHz, above which the dead time increases

and the diode risks destruction by overheating. Photomultiplier tubes (PMT) have lower efficiencies, in the

range of 20%, but can have shorter dead times and higher maximum count rates. These parameters limit

the speed of the random number generator described above. First, the maximum rate of operation is 10

Mbit/s, with each of the two detectors running at the maximum speed of 5 MHz. However, because of

the inefficiency in the detectors, sometimes neither will fire, other times the LED will emit more than one

photon and both detectors will fire. Two-photon and zero-photon events, which provide no random bits

reduce the theoretical maximum random number generation to 7.5 MBit/s. This is achieved with an optical

pulse train at 20 MHz (limited by the dead time of 50 ns) bright enough to cause each detector to fire 25%

of the time (to keep the average count rate at 5 MHz). A single bit will be generated when exactly one of
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the two detectors clicks, which will happen a fraction Pbit = 2 · 0.25 · 0.75 = 37.5% of the time. As in all

physical random number generation, imperfections in the apparatus, such as bias and after-pulsing, require

some post-processing to eliminate the concomitant non-randomness, reducing the final generation rate.

However, there are a number of other sources of randomness available from photon detection. First,

the 0-photon and 2-photon events also occur randomly, and if properly treated can increase the random

bit rate. Furthermore, while the detector count rate is limited, the time resolution can be extremely high,

anywhere from 200 ps down to 50 ps [34]. Our random number generator exploits timing information to

achieve random bit rates > 20 MBit/s from a single APD. It does this by using as an entropy source the

time between photon arrivals on a single detector. A CW LED illuminates a single APD, and the brightness

is adjusted to maintain a safe counting rate. Then, the interval between successive clicks is measured by a

high speed counter. This interval, measured in units of the high speed clock period, is emitted as a random

value at each photon detection.

While the simple beam splitter-based RNG generates 0s and 1s with approximately equal probability, this

time-based system generates multi-bit numbers that are not evenly distributed. Because photon detection is

a Poisson process, the counter values follow the corresponding waiting-time distribution, which is exponential

decay. This requires post-processing to generate a string of uncorrelated random bits. However, since as

mentioned, imperfections in the beam-splitter RNG require post-processing anyway, the added burden is

not particularly great.

4.3 Analysis

In order to quantify the degree of randomness in arrival time distribution, we use the Shannon entropy [35]

S = −
N

∑

i=0

Pi log2 Pi, (4.2)

where the Pis are the probability of each outcome. The Shannon entropy is measured in bits, and the goal is

to generate output with very close to 1 bit of Shannon entropy per output bit. This is the condition where

every possible output is equally likely. Other quantities of interest are the min-entropy

Smin = − log2 max({Pi}), (4.3)
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which conveys the likelihood of an attacker guessing an entire output string on the first try, and the guessing

entropy

Sg = log2 2N50, (4.4)

based on the number of guesses an attacker must make in order to find the right answer 50% of the time.

These will be discussed further below.

The post-processing to remove bias and compress the randomness from photon arrival time data into the

desired high-density randomness is based on a hash function. Hash functions are a type of mathematical

operation that map arbitrary length input strings onto fixed length output strings. The basic idea is to

collect a series of clicks from a photon counter while keeping a running tally of the amount of randomness

present. The arrival times are written into a buffer, and when enough entropy is present, the entire block is

fed into the hash function, which compresses the data into a fixed length block intended to have near perfect

entropy density.

To keep track of the entropy in the input buffer, we need to know the probability of each possible value.

This can be measured fairly easily, or calculated from a physical model of detection. Here we will use a

physical model for simplicity:

Pi =











0 i < δ

e(δ−i)/λ i ≥ δ.
(4.5)

This corresponds to a dead-time of δ and an average time between clicks of λ, both measured in units of the

counter resolution. For large λ, the average entropy of this distribution is log2(λ) + log2(e). To ensure that

the randomness behavior is from the photon arrival times, the counter resolution should be no finer than

the timing resolution of the detector. Higher-frequency counters will still generate random-looking data;

however, the source of that randomness has to do with the less well understood properties of the APD. The

probability for each measurement is multiplied together (or, their logarithms added) until the probability

of a given buffer occurring is less than 2−B , where B is the number of bits output by the hash function.

This ensures that there are greater than 2B possible inputs to the hash function, and if it operated ideally,

the output would be perfectly random. This is complicated by collisions in the hash function: cases where

different inputs map to the same output. Since it is impossible for a compressive function such as a hash

function to operate without collisions, we need to supply some extra entropy to the input buffer to make

sure every output from the hash block has approximately the same probability. To do this, we select an

entropy threshold, T , which is the number of bits of entropy we need in the hash function’s input in order

for the output to be very nearly random. We will show below that for typical hash functions a threshold of

T = B + 10 bits is sufficient to ensure nearly perfect random numbers.
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To implement this system, we need to quantify how much excess entropy we must provide as input to the

hash function in order that the output will be sufficiently unpredictable. In order to do this, we make some

assumptions about the hash function. First, it must take on every output value with the same frequency;

for instance, a hash function with a “stuck-bit” that is always either 0 or 1 would not be appropriate for

this use. Second, it must not expose the bias inherent in our partially random input. For instance, the

input to our hash function will be counter values, the high order bits of which will usually be zero. If

some of the output bits depend only on those high order bits, they will be biased as well. One useful

property for a cryptographic hash-function to have is the strict avalanche criterion and the bit independence

criterion [36]. These properties state that whenever a single input bit is changed, each output bit flips with

a 50% probability, and that whether two bits i and j change has no correlation. However, these properties

are both very difficult to prove for real hash functions and not sufficient to guarantee correct operation

of a true random number generator. Nevertheless, cryptographic hash functions work very well for this

application, and we use the SHA family of hash functions [37] to do compression. It is important to note

that this application of hashing is not vulnerable to collision attacks, so recently discovered vulnerabilities

in SHA-1 [38] are not relevant.

Given the uniform distribution assumption of our hash function, it is easy to calculate the entropy and

min-entropy of the output from our RNG. To do this, we need to calculate the distribution of outputs from

our hash function, and we do so assuming that it is random, i.e., the patterns in our input data do not cause

some hash outputs to be unnaturally preferred over others. In this case, if the hash function has size B bits

(and therefore 2B = Q possible outcomes), and the probability of each accepted input is P (X) ≤ 2−T = 1/N ,

then we can compute the output entropy as follows: we will conservatively approximate that we have exactly

N possible inputs, each equally likely, with probability 2−T ; then the probability that m inputs map to a

given output is given by the binomial distribution:

P =

(

N

m

) (

1

Q

)m (

1 − 1

Q

)N−m

. (4.6)

We can rearrange the sum in Eqn.( 4.2) by grouping all terms having the same pi giving:

S =

N
∑

m

Q

(

N

m

)(

1

Q

)m (

1 − 1

Q

)N−m
(m

N

)

log2

(m

N

)

. (4.7)

The min-entropy is a more conservative measure that only takes into account the most probable outcome of

the hash function. Thus, it represents the probability that an adversary could guess an entire hash function

register in a single guess. We estimate the min-entropy by looking at the long tail of the binomial distribution
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Hash Size Input entropy Output entropy Output min-entropy
128 128 124.8 122.9
128 133 127.98 125.9
128 138 127.999 127.46
256 261 255.98 253.4
256 266 255.999 255.28

Table 4.1: Shannon entropy and min-entropy emitted from the hash function, dependent on the input entropy
in bits. The larger the hash block size, the less overhead is required.

and finding the threshold m such that there is roughly a 50% probability of at least one bin having at least

m inputs map to it. Both of these quantities have been calculated numerically and are listed in Table 4.1 for

several values of the input entropy Sin and hash function size B. For common hash function sizes, 10 extra

bits of input entropy is sufficient to saturate the output of the hash function. For a 256-bit hash function,

an entropy of 255.999 corresponds to an attacker guessing 50.1% of bits correctly, and the min-entropy of

255.28 corresponds to being no more than twice as likely to guess an entire 256-bit block than if it were

perfectly random.

4.4 Tests of Randomness

Many applications desire proof that a given source generates random numbers. This is not possible. Testing

can show the presence of patterns, but not their absence. Nevertheless, many people have devised tests of

random behavior in an attempt to catch common weaknesses in random and pseudo-random generators [39,

40, 41]. However, these tests are essentially useless for cryptanalysis of our RNG. To demonstrate this,

we constructed a random number generator in which we replaced the photon arrival times with an easily

cryptanalyzed linear-congruential PRNG. The resultant generator passed all of those tests, despite being

easily cracked and containing zero entropy (i.e., the output is entirely predictable, if you know the algorithm

used). Unsurprisingly, when a correctly working generator is used, it also passes all of those tests.

Instead of testing for randomness, then, a high-quality random number generator must be built defen-

sively to have confidence in a calculated lower bound for the entropy content of the output. This requires

carefully characterizing the behavior of the input entropy source, measuring the extent of possible defects

in its behavior, and accounting for them. In our generator, we look for several types of correlations, and use

them to adjust the estimate of the entropy calculator which decides how many counter values go into each

hash block.

The first and simplest bias to look for is deviation from an ideal Poisson distribution. A number of

factors cause this deviation, the most important of which are after-pulsing and low efficiency at the end of
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dead time. Due to trapped electrons in an APD, there is a small chance (∼ 1%) of exhibiting breakdown

without absorbing a photon, usually very shortly after the end of dead time. Furthermore, the measurement

apparatus itself might have some bias, for instance, the low-order bit might be considerably more likely to

be 0 or 1 if the clock driving it is not exactly a square wave. These types of bias are easy to account for—we

simply measure the actual distribution of photon arrival times, and use the probability for each value to

calculate its contribution towards the total entropy. If some outcomes are substantially more likely than

they should be, their estimated entropy contribution will be reduced accordingly.

The second form of bias is more difficult to detect, and that is correlation between sequential or nearby

counts. We expect these correlations to be relatively low, due to the asynchronous nature of our generator.

A synchronous generator that measured the time between a starting clock and the next photon arrival time

would potentially have strong correlations, since the detection time in one clock cycle would determine

how likely an early detection in the next cycle was due to dead time, after-pulsing, and detector efficiency.

However, in this asynchronous mode of operation, the counter always starts immediately after a click, which

presumably erases most of the existing state of the detector. There are, however, still some sources of

correlation possible, such as fluctuations in the LED brightness or detector efficiency due to, for example,

power supply fluctuation that cover multiple detections. We search for these in the autocorrelation function

of the input counter data. This is something of a brute-force approach, and cannot detect many forms of

correlation; however, it is a reasonable test in the absence of a strong candidate for a source of correlations.

As shown in Fig. 4.2, we find no significant correlation between nearby results. Multi-point correlation

functions could be considered, however there is no basis to expect such behavior, and therefore no indication

of how high-order would be the correlations needed to be examined.

Very long timescale correlations are difficult to test for by autocorrelation. However, the most likely

source of correlations is slow drift in the count rate, or sensitivity to 60 Hz fluctuations from power lines. In

order to combat these factors, we keep a running average of the mean count rate that feeds into the entropy

calculator, allowing it to follow gradual changes in the system.

4.5 Conclusion

We have implemented this random number generator using an APD at a maximum count rate of 4 MHz,

yielding random bits at > 20 MBit/s. This is considerably faster than any other quantum random number

generator we know of, and uses only a single photon counter, rather than two, as in some other designs [32,

33]. The bit rate can be increased further by increasing the time resolution of the measurement system,
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Figure 4.2: Autocorrelation on a sample of raw detection-interval measurements. The spike at τ = 0 shows
that the data is perfectly correlated with itself at zero lag. At other lags, the correlation drops to the baseline
level.

which is 5 ns. The jitter of the photon detectors is approximately 200 ps, improving our time resolution

to that level would increase the entropy per photon by approximately log2(5ns/200ps) = 4.6 bits, nearly

doubling the theoretical bit rate. Increasing the resolution beyond this level is of questionable value, since

some of the entropy will be from the jitter in the detection process, not the absorption of photons themselves.

While we have no reason to believe this is anything but random, we prefer to gather entropy only from the

relatively well understood behavior of photons. Furthermore, since the data rate increases as the log of the

time-resolution, increasing the timing resolution without increasing the count rate can only give small gains

at some point. Instead, to increase the random bit rate, we would need to use a detector such as a PMT,

which can operate at higher count rates. A hypothetical PMT with a 50 MHz maximum count rate and the

same 200 ps jitter could achieve approximately 400 Mbit/s random bit generation.

Our generator is ideal for use in quantum cryptography, since it can provide random numbers at such a

high rate. For extremely high speed cryptography systems, it is still not nearly fast enough. These systems

would require either several generators running in parallel, or to expand the data stream using a pseudo-

random generator. This would, of course, somewhat compromise the security of the overall system; however,

the more random input to the generator, the harder it will be for an eavesdropper to crack the RNG and

intercept the secret communication.
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Chapter 5

Relativistic Quantum Cryptography

5.1 Introduction

Quantum cryptography, also known as quantum key distribution (QKD) was the first, and is currently the

only commercially implemented quantum information application. Within the validity of certain assump-

tions, it allows uncrackable encryption, an alluring prospect to organizations protecting secrets whose value

is incalculable. This is achieved by exploiting the no-cloning property of quantum information [42], which

implies that it is impossible to copy an unknown quantum state without disturbing the state of both the

original and the copy. Thus, QKD provides secure communication based on the laws of quantum physics,

rather than mathematical algorithms believed (but not proved) to be difficult to reverse.

The most common QKD protocol is BB84 [43]. In this protocol, the canonical parties, Alice and Bob,

mutually agree on a shared, secret sequence of bits which can be used as a key for a conventional cryp-

tographic protocol. This can be either a Vernam cipher, a provably secure classical encryption algorithm,

or a traditional symmetric cipher such as AES [44]. While the use of AES or other classical encryption

algorithm compromises the “perfect security” claim, high quality symmetric ciphers are generally regarded

as less vulnerable than the public-key algorithms currently used for key exchange, such as RSA [45]. All

known public-key algorithms are also vulnerable to quantum computers [4], while symmetric block ciphers

are not known to be. Although a quantum search (e.g., Grover’s algorithm) can speed up the search through

a symmetric cipher’s key space, it only reduces the search speed by a factor of
√
N . The time required to

brute-force attack such a cipher is still exponential in the key size, so this threat can be protected against

by simply doubling the key size. Doing so would usually only double encryption and decryption time, but

would dramatically increases the time required to break the cipher.

Every QKD protocol has a maximum channel noise (the bit error rate, or BER)under which it can

operate. For BB84, this is approximately 11%. More advanced protocols, such as the six-state protocol [46]

(SSP) can tolerate higher error rates at the expense of lowered efficiency on low-noise channels. We have

implemented a new protocol which uses additional constraints coming from special relativity to eliminate
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one type of loss, so-called sifting loss. This relativistic quantum cryptography (RQC) protocol increases the

efficiency of both BB84 and SSP, while making the SSP advantageous regardless of channel noise. RQC is

one of only a small number of communication protocols that combine quantum mechanics and relativity to

achieve something not available with either alone, and the only one that has been implemented.

5.2 Quantum Key Distribution

In BB84, Alice transmits single photons to Bob in one of four states of polarization, horizontal (|H〉), vertical

(|V 〉), diagonal (45◦, or |D〉) or anti-diagonal (−45◦, or |A〉). Bob then measures each photon in one of two

bases, either the rectilinear basis (H/V) or the diagonal basis (D/A). Alice and Bob announce on a public

channel which basis, but not which polarization, they used for each photon. In each case where they agree,

they have perfectly correlated results, while in cases where they disagree their results are random. The cases

where they agree form the sifted key, and are assigned bit values according the actual polarization sent or

measured in each case. The presence of an eavesdropper, Eve, will introduce errors into the sifted key. Alice

and Bob find and correct those errors using public communications and a classical error correction protocol,

keeping track of how much information they release about the key as they do so. They assume that all of

the errors they found were due to noise induced by an eavesdropper (a conservative assumption – there will

always be some unavoidable errors due to imperfections in the apparatus or channel). Now, Alice and Bob

have identical bit strings, while the hypothetical eavesdropper has less than perfect information about it. By

computing hash functions [47] of their data and throwing some of it away, they can reduce the eavesdropper’s

knowledge such that she has an arbitrarily low chance of knowing even a single bit of the final key.

One important parameter for a QKD protocol is the robustness against errors. If Eve’s potential knowl-

edge of the sifted key is greater than Bob’s, Alice and Bob will be left with no secret bits after error correction

and privacy amplification. Effectively, the information revealed by Alice during error correction will allow

Eve to completely correct her copy of the key. Privacy amplification is then impossible. It is possible for

Alice and Bob to use two-way communication to implement a procedure known as advantage distillation to

increase Bob’s knowledge relative to Eve so that error correction and privacy amplification may be used.

This procedure is usually very inefficient, however, and is rarely used in practice.

The mutual information, measured in bits per photon, between Alice and Bob (IAB) is the same for all

protocols, and reflects the bits sacrificed to error correction. This is given by

IAB = 1 + (D log2(D) + (1 −D) log2(1 −D))η, (5.1)
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Where η is a parameter of the error correction algorithm. The Shannon limit corresponds to η = 1, the best

possible error correction algorithm. For CASCADE [48], the most commonly used protocol, η ≈ 1.16. For

a given protocol, Alice and Bob can compute the maximum knowledge of an eavesdropper in terms of the

disturbance caused by her tampering. For BB84, Eve’s information on the sifted key is limited to [49]

IBB84
AE ≤ 1

2
φ(2

√

D(1 −D)) (5.2)

φ(x) ≡ x log2(x) + (1 − x) log2(1 − x).

In order to efficiently generate a secret key (i.e., without advantage distillation), Eve’s information on the key

must be less than Bob’s. As the disturbance increases, and Eve’s information approaches Bob’s information,

the efficiency of BB84 drops precipitously. One way to combat this is to use the six-state protocol [46]. This

protocol adds an additional communication basis, the circular basis, consisting of right-circular polarization

(|R〉) and left-circular polarization (|L〉). An optimal eavesdropper gains less information for a fixed distur-

bance [50]. This allows operation over channels having more noise and a corresponding higher efficiency in

sifted-key to final-key processing for any disturbance. Unfortunately, since Alice and Bob only use the same

basis 1/3 of the time, the sifted key rate is lower than it would be for BB84, and the overall efficiency is

lower for all but the highest error rates. Maximal efficiency vs. disturbance is shown in the theory curves of

Fig. 5.4 for each protocol discussed.

5.3 Delayed Choice Quantum Key Distribution

Our new QKD protocol allows Bob to measure each photon in the correct basis, without providing to Eve

further useful information. This eliminates the sifting step, in principle increasing the efficiency of BB84 by

100% and SSP by 200%. In order to do this, Bob stores the photon he receives in a quantum storage cell

until after Alice announces her basis. Bob can then measure with confidence, choosing the same basis as

Alice each time and eliminating the inefficiency caused by random selection. It is possible to gain a similar

advantage if Alice and Bob use one basis much more frequently than the other, while only occasionally

checking in the other basis [51]. This can also dramatically reduce the sifting loss, though not eliminate the

process entirely.

The primary advantage of RQC is the increased efficiency. If the efficiency of the quantum storage is

close to 100%, RQC can exceed the efficiency of the traditional protocols by a considerable margin. A

secondary advantage is that it eliminates one form of attack against QKD protocols in which Eve uses basis

disagreement to hide the disturbance caused by her probe. It is possible for an eavesdropper to determine
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from her probe whether or not she induced an error in Bob’s measurement, then tamper with the classical

channel to force Alice and Bob to discard those events, hiding her disturbance in the sifting process. Of

course, proper authentication of the public channel protects against this form of attack; however, it is

impossible for Eve to perpetrate this when there is no sifting.

There are a few limitations imposed by the RQC protocol as well. Most importantly, since Alice and

Bob rely on preservation of causality to protect against Eve, they must ensure that the events corresponding

to Bob receiving a photon and Alice transmitting the measurement basis are causally separated. A second

inconvenience is that Bob cannot rely on passive basis selection using a beam-splitter, but must actively

choose his analysis basis, using, e.g., a Pockels cell. Finally, it is possible to reduce the upper bound on Eve’s

information by assuming that she is not able to wait until the basis is announced to measure her ancilla.

This is not done in practice, since one cannot ensure that Eve cannot indefinitely store the ancilla she uses

to measure Alice and Bob’s photons. However, in RQC it is much easier for her to actually implement such

an attack with modern technology. Nevertheless, since Alice and Bob conservatively assume Eve has such

technology already, this does not affect the final key rate.

The security condition for this relativistic protocol can be seen from a space-time diagram of the transac-

tions involved, shown in Fig. 5.1. The two relevant events are Alice’s transmission of the basis information,

and Bob’s receipt of the quantum signal. As long as the latter is not causally after the former, the protocol is

equivalent (from an eavesdroppers perspective) to the standard protocol, either BB84 or SSP. The simplest

way to understand this is to realize that if Bob measures his photon immediately, the protocol becomes the

non-delayed version. Eve will, in general possess a qubit entangled to Bob’s photon; however, since entan-

glement does not allow signaling, her reduced density matrix and the information she gains from measuring

it cannot depend on what measurement Bob performs, or when he does so.

In order to implement RQC, Alice and Bob must verify that the causality constraint illustrated in Fig. 5.1

is satisfied. In order to do so, they must know their relative separation in space and time to relatively high

accuracy – the uncertainty in their space-time separation must be added to the storage time. For typical

storage times of a few hundred nanoseconds, this requires that their space-time coordinates be known to

better than 100 ns, a reasonable figure. Furthermore, Bob must have a quantum storage capable of preserving

the state of a photon with low noise and low loss. We implement this using the cavity-based storage described

in Chapter 3.

The minimum storage time required depends on several factors. The first is a fixed interval, dependent

on Bob’s apparatus. If he receives both the quantum and classical signal at nearly the same time, he must

still be able to store his photon for as long as it takes to decoded the classical basis signal and set his analysis

32



Figure 5.1: The required relative ordering of events in relativistic QKD, shown on a standard space-time
diagram. If the two shaded cones overlap, the protocol is not secure, as an Eavesdropper in the intersecting
coordinates could get the basis information and use it to measure the signal photon without disturbance.
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Pockels cell to measure in the appropriate basis. For our apparatus, this is roughly 100 ns. The second is the

uncertainty in the timing-positioning. We used a shared high-frequency clock to establish a common time

base with an uncertainty of 20 ns. The third factor is the transmission speed of the classical basis signal.

As shown in Fig. 5.1, the slower the classical signal, the longer until Bob receives it, and the more time he

must store the quantum signal. If the signal is transmitted optically, as in our experiment, this factor is

essentially zero; however, if the signal travels through coaxial cable or fiber, additional delay is required.

Such delay is particularly important, since it is proportional to the distance between Alice and Bob, while

the other delays are fixed. For free-space optical communication, this factor is negligible. Finally, in some

cases, Alice may have to wait a period of time before transmitting her basis selection. This is particularly

important when using a passive-choice entangled source, since Alice does not know the basis until after one

member of the photon pair is detected. In this case, Bob must add the latency of Alice’s detectors (13 ns for

our APDs) and the time to encode the basis message to his storage time. This adds approximately another

150 ns to the total delay.

5.4 Classical Communication

In addition to the storage cavity discussed in Chapter 3, the other key element of an RQC implementation is

the classical communication. The limited available storage time requires a very low-latency communication

system. Most widely available communication systems trade latency for higher bandwidth and improved

features, such as multiple access. For instance, 100 Mbit Ethernet has a minimum latency, required to detect

collisions from multiple transmitters, of 6.4 µs, far too long to be useful. A single packet is at least 64 bytes

long, whereas we only need 2 bits to identify the basis.

Our communication system is an optical serial link implemented on a programmable logic device (CPLD).

Such devices allow logic gates to be connected in a variety of ways, and are reprogrammable using flash

memory. We 1 implemented a finite-state-machine (FSM) which, upon recognizing an input, identifies which

basis to send, encodes that into a 5-bit message (only 2 are needed, the others are used for framing and

timing), and sends it to a laser diode. A similar CPLD on Bob’s side recognizes the code from Alice and sets

the Pockels cell to the appropriate value. The CPLDs also output data to a PC using a digital IO board,

allowing us to record the key data.

With the CPLD we used (Xilinx 9572XL), the maximum frequency the state machines can run at is

55 MHz, and the total end-to-end latency of the system is approximately 120 ns, not counting propagation

between the modulator and demodulator. Substantially faster devices are available, based on FPGA (field

1Thanks to Matt Brenner for the initial modulator design
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programmable gate array) technology, which also allow much higher logic density. While the latency is

already acceptably low, using a more powerful logic device would allow further stages of the QKD protocol,

such as error reconciliation and privacy amplification, to be implemented in hardware, reducing demands

on the communication speed to the PC. Currently, we simply poll the output of the CPLDs from the PC,

consequentially generating large amounts of data which must simply be immediately discarded, since most

of the time the apparatus is idle.

5.5 Implementation

We implemented RQC with both a classical faint-pulse laser and an entangled photon source. The classical

laser source is BB84 only, while we implemented both BB84 and SSP with the entangled source. In all cases

we find an improvement in the overall data rate for the relativistic version. As expected, the difference is

most pronounced (as high as 167% improvement) for the SSP. We also simulated an eavesdropper, showing

how the final key rate decreases as an eavesdropper induces noise.

5.5.1 Classical Source

The classical laser source is shown in Fig. 5.2. A separate laser is used for each polarization state, |H〉, |V 〉,

|D〉, and |A〉. Each laser is supplied a small bias current of approximately 5 mA through a bias tee. A 2 ns

electrical pulse then travels through a high bandwidth 4-way MOSFET switch, which directs the pulse to

an adjustable attenuator and then the modulation input of one of the bias tees. Each attenuator is adjusted

to balance the relative brightness of each laser at the output of the source. The lasers are combined with

polarizing beam splitters, a waveplate to produce |D〉 and |A〉, and beam splitter into a single-mode fiber,

which eliminates distinguishing information from the spatial mode. Each laser is in a temperature-controlled

mount, which is adjusted to match them to the same wavelength.

The first implementation of the classical source suffered from considerable variances in the laser diodes.

Despite driving the lasers with the same pulse generator through a switch, the pulse width was not the same

for the two lasers (3.8 ns versus 4.1 ns). This is a form of distinguishing information that an eavesdropper

could use to determine which laser each pulse came from without measuring or affecting the polarization

state – the only degree of freedom Bob can detect. Furthermore, the lasers could not be matched to the

same wavelength within the achievable temperature range. To overcome this difficulty, we tested many laser

diodes to find a set of four that have similar characteristics, allowing much better matching of pulses. This

also highlights one of the problems with faint-laser BB84. While we reduced the distinguishing information
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Figure 5.2: Left: Photo of the classical laser source. Right: Schematic of the same source. Light from four
laser diodes is combined such that each laser generates one of the four BB84 polarization states. Pulses
from these lasers are coupled into a single-mode fiber to clean up the spatial mode, then attenuated until
the average photon number is less than 1/pulse.

we know about, it is always possible that some information could leak out. In order to actually show that

two states are indistinguishable, we would need to show interference between them. For instance, if single

pulses from two lasers were combined on a screen or camera, they would show a interference pattern. The

visibility of the interference fringes depends on the distinguishability (D) of the two pulses, according to the

formula

V 2 +D2 ≤ 1. (5.3)

However, this is very difficult to do. The distinguishability must be on the order of 5%, leading to a minimum

visibility of 99.9%. It would be very difficult to achieve a signal-to-noise ratio high enough to see this in

a single-shot fringe pattern. A better way might be to use 2-photon interference with a Hong-Ou-Mandel

interferometer, but that would also be a very difficult experiment.

5.5.2 Entangled Source

An alternative solution uses entangled photons. Entanglement is only possible in the absence of distinguish-

ing information. Any variation in mode shape, frequency, or timing between the polarization states will

cause decoherence that will introduce errors, exactly as if Eve had taken that information herself. It is for

this reason that entangled QKD can be secure even if the source is controlled by a third party, even the

eavesdropper – as long as Alice and Bob measure quantum correlations they can find a bound for how much

information Eve can have about the results of their measurements.

Our entangled photon source for QKD was described in Chapter 2. We use a two-crystal Type-I source as

described in Chapter 2. In this case, the crystals (BiBO) are tipped such that the cones collapse into beams
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collinear with the pump. The pump is removed with a laser edge filter, leaving only the downconversion:

Bob’s photon has a wavelength of 670 nm, chosen to match the wavelength of the classical source described

in the previous section, while Alice uses the conjugate wavelength, 737 nm. These two beams are split

by a dichroic mirror, and coupled into single-mode fibers. By coupling Bob’s photon into a fiber, we can

connect either the classical source or the quantum source to Bob’s apparatus. In order to get high quality

states, we then have to couple Alice’s photons into fiber as well. Back in free space, Alice’s photon goes

through beam splitters to randomly select which basis she will measure in. Each of the three beams goes

to waveplates and a PBS to measure it in the appropriate basis. This measurement projects Bob’s photon

into a known polarization [52]. This beam-splitter based state selection is essentially a simple quantum

random number generator, as described in Chapter 4. From this point, operation is exactly the same as

with the classical laser source, with two major exceptions: as mentioned, any correlation between Alice’s

polarization measurement and external degrees of freedom will cause detectable decoherence, alerting Alice

and Bob to its presence, and the multi-photon probability is essentially eliminated. Classical laser pulses

have a significant probability of producing multiple photons in a single pulse, which can be a problem as the

eavesdropper can remove a single photon without Bob noticing. However, decoy state protocols2 [53] allow

Bob to detect this attack, significantly reducing the importance of multi-photon events. In the entangled

case, however, even in the rare multiple-pair event, there are no correlations between the pairs, so splitting

off one photons is less helpful to Eve.

5.5.3 Polarization Analysis

One of the main advantages of RQC is that it increases the efficiency of the six-state protocol. However,

since it requires Bob to perform active basis selection, he must be able to switch between three different

bases quickly. We accomplish this with an electo-optic device (Pockels cell) which rotates the polarization

in response to an applied voltage. A typical arrangement would include two Pockels cells, one set at 22.5◦

to select the |D〉/|A〉 basis, and the other at 45◦ to select |R〉/|L〉. In our implementation, we eliminate one

Pockels cell by having a single device select both the diagonal and circular bases. A single device that rotates

around the {1,1,1} axis, equidistant from |H〉, |D〉, and |R〉, can select the three analysis bases by applying

a voltage of −V , 0 or +V , where an applied voltage V causes a 1/3 wave shift, shown in Fig. 5.3. Pockels

cells can only rotate around a axis corresponding to linear polarization (they behave exactly as variable

waveplates), but this effect can be simulated with the addition of fixed waveplates.

The entangled state created by Alice is subject to several stages of polarization rotation on both photons.

2Photon number-splitting is in effect a non-linear absorption. Decoy state protocols use pulses of different mean brightness
to detect this form of attack.
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Figure 5.3: Rotation around the {1, 1, 1} axis on the Poincaré sphere allows access to all three communica-
tions bases in the six-state protocol with a single Pockels cell. With no voltage applied, the projection is in
the H/V basis, while applying a positive or negative voltage allows measurement in the D/A or R/L basis.

First, the state created acquires some phase shift traveling through the birefringent crystals. The produced

state is thus (|HH〉 + eiφ|V V 〉)/
√

2. The specific states created by remote state preparation depend on the

value of this phase. Furthermore, both photons acquire a geometric phase traveling through the fiber-optic

mode filters, and Bob’s photon experiences a rotation in the storage cavity. All of these polarization shifts

act to effectively randomize the final entangled state that Alice and Bob share. However, as long as the

rotations are unitary, they preserve the entanglement, and any maximally entangled state is equivalent to

any other by unitary rotations on one of the photons. Therefore, instead of measuring and correcting for

each step of polarization rotation, we simply make a complete state tomography (as described in section 2.7)

between Alice and Bob with all the rotations included, then set Alice’s analysis waveplates to match the

three bases that Bob can project into. This allows us to eliminate all fixed waveplates except for a single

HWP after the Pockels cell. We use this HWP to tune the effective angle between the Pockels cell rotation

axis and the PBS, which needs to be the same angle (on the Poincaré sphere) as the angle between |H〉

and the {1,1,1} direction, i.e., 27.4◦. This drastically reduces the number of waveplates needed, with the

disadvantage that we no longer use the convenient axial, diagonal, and circular bases, but instead three

essentially random bases, though they retain their relative orientations, begin at right angles to each other

on the Poincaré sphere.
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5.5.4 Eavesdropper

In order to show the dependence of the various protocols on error rate, we simulate an eavesdropper, and

show the resulting increase in BER and decrease in key rate. The basic function of an eavesdropper is to

intercept each qubit, and entangle its state with ancilla qubits, then measure those ancilla to guess the

state of the original qubit. The simplest eavesdropper is known as an intercept-resend attack, in which Eve

measures photons randomly in one of the communication bases, then resends a duplicate photon with the

detected polarization. It is easy to show that if Eve does this on every photon, she introduces a 25% BER

for the BB84 protocol: 50% of the time, Eve will randomly select the wrong basis, and 50% of those cases

will result in an error detected by Alice and Bob. For the six-state protocol, Eve will choose incorrectly

67% of the time, and induce a 33% error rate. However, this is not optimal for Eve. She can do better

by measuring in a direction equidistant from each basis. For the standard BB84 protocol, this is the 22.5◦

basis, halfway between |H〉 and |D〉. For the six-state protocol, this is the so-called Britebard basis, in the

{1,1,1} direction on the Poincaré sphere [54]. In fact, this is one way of seeing the advantage of the six-state

protocol: the optimal eavesdropping basis is 27.4◦ from the communication bases, the larger angle causing

more disturbance and gaining the eavesdropper less information than she could get in the BB84 protocol. We

simulate an optimal eavesdropping strategy using quartz decoherers. These are thick, birefringent optical

elements that cause polarization decoherence by entangling polarization to the frequency degree of freedom.

The net effect is the same as if entanglement were to a qubit Eve kept, although of course in reality she

sends her ancilla to Bob along with the disturbed polarization state. Nevertheless, the induced disturbance

on the QKD polarization qubit is identical to that expected in an actual eavesdropping attack.

5.6 Results

We show an improvement in total secret key rate for RQC with both the classical laser source and the

entangled photon source. Relative data-rates are shown in Fig. 5.4. With the classical source, we only

demonstrated BB84, and the gains are relatively small (12%), mostly due to loss in the storage cavity. In

this system, we used a 454-ns delay line with a total efficiency of only 66%. This, combined with a slightly

higher error rate when the delay is included, lead to a marginal improvement over the non-relativistic

protocol. We can expect that a similar design using the six-state protocol would have a greater relative

gain: the cavity loss and noise would be approximately the same, but the sifting loss we avoid would be

much higher. In addition, as discussed above, we assumed that the polarization state was not available to

Eve through some other degree of freedom. We expect the spatial modes of the different state are identical,
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Figure 5.4: Relative efficiency for several variations of RQC. The efficiency is the number of final secret
key bits over the number of photons detected by Bob, with a correction factor for loss during storage. The
higher error rates for each protocol have a simulated eavesdropper.

due to the use of a fiber mode-filter; however, we can only claim that the states are indistinguishable by

frequency or timing to within our ability to measure them. The entire system operates at a 10 kHz repetition

rate, with a final key rate of 840 bit/s.

With the entangled-photon source we show a greater advantage for the relativistic protocols. This

is primarily due to reducing the required delay time, using only a 350-ns delay with approximately 85%

transmission efficiency. We first characterized the entangled state using quantum state tomography [21], to

verify we have nearly a maximally entangled state. While this is not strictly necessary, as Alice and Bob

automatically place a bound on the degree of entanglement from their measure BERs, it is experimentally

useful. The tomography shows the entangled state to have a tangle T = 93.1% and a fidelity with the nearest

maximally entangled state of F ≥ 97.8%, resulting in a minimum average BER of 2.5%, and an efficiency

of 0.73 bits/photon detected by Bob. Due to loss in the cavity, we consider this to be equivalent to only

0.62 bits/photon for comparison against the non-relativistic protocol. Nevertheless, this rate is considerably

greater than what we achieved in the non-relativistic variant (which we implemented by by-passing the
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optical delay line), and greater than is possible even in a noise-free system.

Although our system operated at a relatively low total rate (425 raw bits/second) due to the entanglement

brightness and maximum switching speed of the Pockels cell, it shows a distinct advantage over what a similar

system could accomplish without incorporating the relativistic element. Furthermore, the storage aspect does

not limit the speed of operation at any realistic level. Since the storage is a simple delay, it can automatically

store many photons in different time bins. A high-speed RQC system, using many other quantum memories

would require one qubit for each “in-flight” photon. We consider it unlikely an implementation could use

less than 100 ns of delay, which for a 1.25 GHz QKD system would require 13 separately addressable storage

qubits.
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Chapter 6

Quantum Orienteering

The contents of this chapter have previously been published by Jeffrey, Altepeter, Colci, and Kwiat as

“Optical Implementation of Quantum Orienteering”, Phys. Rev. Lett., 96:150503 (2006). c© American

Physical Society. Used with permission.

6.1 Introduction

Quantum orienteering is a quantum communication protocol addressing the problem “how can Alice most

efficiently communicate a direction in space to Bob?” While cryptography involves communication resistant

to a malicious adversary, there is no such concept here. Rather, Alice and Bob are cooperating parties,

attempting to communicate a direction in the most efficient manner possible, i.e., the most precision with

the fewest resources. This problem can be solved using classical or quantum communication. If Alice and Bob

share a reference frame (such as that provided by well-known distant stars, or the earth’s magnetic field),

they can transmit a classical signal, e.g., a binary encoding of the polar and azimuthal angles, allowing

straightforward communication of a direction to a precision limited only by the number of bits they use.

This protocol is simple and efficient; however, if they do not share a frame, Alice and Bob must transmit

a physical object, such as a spinning gyroscope whose angular momentum points in the desired direction.

No amount of “pure” information can convey a physical direction due to the symmetry of space. These

physical objects can be either quantum or classical. Classical objects such as gyroscopes may, in principle,

be measured to arbitrary precision, yielding a perfect transmission fidelity. However, for small systems,

such as a single spin-1/2 particle, quantum mechanical uncertainty limits the accuracy with which Bob can

estimate the direction. Here we examine how Alice and Bob can cooperate to maximize the information Bob

can extract from such a system.

For quantum orienteering using two spin-1/2 particles, it has been proven that a straightforward mea-

surement of the two particles independently does not yield the optimum fidelity of communication, but can

be beaten by a joint measurement on the two particles [55, 56]. Furthermore, if Alice changes her encoding
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by flipping the direction of the second spin, Bob can make even more precise measurements [57]. Others

have investigated optimal strategies for more than two spin-1/2 particles [58, 59] but here we consider only

one- and two-spin cases. Quantum orienteering is similar to optimal detection [60] and unambiguous state

discrimination [61, 62], protocols for distinguishing between a fixed set of non-orthogonal states. Recently,

Pryde et al. [63] showed the advantage of using collective measurement to distinguish whether a pair of

spins were parallel or anti-parallel. In contrast to these, orienteering involves providing the best estimate

for an arbitrary state or direction. We have designed and implemented a sample protocol using photon

polarization as our effective spin-1/2 system. Below we discuss the advantages and limitations of such an

implementation.

6.2 Optimal Measurements

In order to compare different protocols for orienteering, we must quantify the accuracy of transmission. We

define the average transmission fidelity as

F ≡
∫

dΩ
1 + cos(θ)

2
, (6.1)

where θ is the angle between Bob’s guess and the direction Alice tried to send, and the integral is an average

over all possible directions Alice might choose. For a random guess, then, the average fidelity will be 1/2,

while perfect transmission gives a fidelity of 1. When Alice is only allowed a single spin-1/2 particle to

transmit a direction, Bob’s measurement is simple: he picks any direction r̂ and measures the spin in that

direction, e.g., with a Stern-Gerlach magnet. Bob’s guess then is ±r̂, depending on whether the outcome of

his measurement is ±1/2. This achieves a transmission fidelity of 2/3, the optimal value using only a single

spin [56].

When Alice sends Bob two spins polarized in the same direction, Bob has several options. The simplest

extension uses two independent measurements, one on each particle. The best way to do this is to measure

in bases at 90◦ to each other, e.g., along X̂ and Ŷ . This gives a fidelity of 73.3%. However, if Bob instead

makes a single collective measurement on the two spins, he can make a slight improvement to F = 75% [56]

by projecting into the basis

|ψk〉 =

√
3

2
|n̂k, n̂k〉 +

1

2
eiφk |ψ−〉. (6.2)

The |n̂k〉 are the tetrahedral states shown in Fig. 6.1, while |ψ−〉 is the anti-symmetric Bell state |HV 〉−|V H〉√
2

.

Adjusting the phase term eiφk allows the set of states to be made orthonormal (see Table 6.1).
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|n̂1〉

|n̂2〉
|n̂3〉

|n̂4〉
x̂ (|H〉)

ŷ (|D〉)

ẑ (|R〉)

Figure 6.1: The four n̂j equally spaced directions in space corresponding to the corners of a regular tetra-
hedron. In our implementation we associate directions in real space with directions on the Poincaré sphere
of polarization states: right-circular polarization (|R〉) is mapped to the ẑ direction, horizontal polarization
(|H〉) is mapped to x̂, and 45◦ polarization (|D〉) to ŷ.

Remarkably, even this is not the optimal protocol, though it is the best Bob can do if Alice polarizes

both spins in the same direction. If instead Alice polarizes the second spin in the opposite direction (and

informs Bob she is doing so!) Bob can make a different set of joint measurements [64]:

|ψ′
k〉 =

√
3

2

|n̂k,−n̂k〉 + | − n̂k, n̂k〉√
2

+
1

2
eiφ′

k |ψ−〉. (6.3)

Again, the φ′k’s are chosen to make this an orthonormal basis. Using these measurements, Bob can increase

the fidelity of his guess to 78.9%, the maximum achievable using 2 spin-1/2 particles [65]. The advantage of

2 anti-parallel spins over 2 parallel spins has frequently been qualitatively explained as follows: the former

states span the full Hilbert space, while the latter do not (they have no overlap with the singlet entangled

state). Thus, the parallel spins have a smaller effective “alphabet” for encoding the direction. However,

this intuitive argument has not been made rigorous, and recent work has in fact shown that the argument

is incomplete and actually fails in some cases [66].

6.3 Photon Implementation

While it is common to regard all two-level systems as equivalent, for this application they are not. Here

we are not only interested in the geometry of state space, but its embedding into a physical object. It
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(X,Y,Z) φk φ′k
n̂1 (0, 0, 1) 0 0

n̂2
1
3 (
√

8, 0,−1) π 0

n̂3
1
3 (−

√
2,
√

6,−1) 1.897 0

n̂4
1
3 (−

√
2,−

√
6,−1) −1.897 0

Table 6.1: The coordinates of the four tetrahedral directions, along with a set of phases sufficient to make
the measurement sets |ψk〉 and |ψ′

k〉 orthonormal.

is thus important to note that while the spin of electrons and other massive fermions can be imagined

to “point” in a specific direction (within the limits of the uncertainty principle), that is not the case for

photons [67]. Consequently, photons cannot directly implement orienteering as described above. Neither

our implementation, nor any other using photon polarization as the communication medium, can transmit

a direction in space without some previously agreed upon reference [68]. Nevertheless, we are still able to

demonstrate the operating principles of orienteering using photons, and in particular show explicitly the

advantages of collective measurements and anti-parallel encodings of the direction.

A number of factors make a direct photon implementation difficult. The most important of these is

that, as mentioned above, the polarization of a photon does not necessarily point in a particular direction.

However, Alice and Bob can use the representation of polarization states on the Poincaré sphere to construct a

mapping, such as that shown in Fig. 6.1, to convert photon polarization estimates into directions. Obviously,

there are an infinite number of equivalent mappings. Bob and Alice’s agreement on a particular one is

tantamount to possessing a shared reference frame.

The second difficulty is that making the required joint measurements is challenging, equivalent to full

Bell-state analysis. While one or two Bell-states may be measured at a time, it is not, in general, possible

to perform an efficient, arbitrary, four-outcome measurement of the two-photon polarization state with

current technology 1. However, if Alice and Bob do share a reference frame (required for the polarization-

to-direction mapping already), they can combine part of the measurement into state creation. Specifically,

since an arbitrary joint measurement without ancilla can be thought of as a two-qubit unitary operator Û

followed by a separable measurement M̂ [64], we can directly apply the unitary to Alice’s source state |ψ〉,

allowing Bob to make a simple separable measurement: (M̂ · Û)|ψ〉 = M̂(Û |ψ〉). This requires Alice to

1It is possible to do full Bell state analysis probabilistically using optical C-NOT gates [69, 70, 71], or to do so deterministically
if the photons are also entangled in another degree of freedom [72].
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precisely create specific partially entangled states such as

|ψ111〉 ≈ 0.683 |HH〉 + (0.463 + 0.358i)|HV 〉

+(−0.208 + 0.383i)|V H〉

+(−0.011 − 0.025i)|V V 〉, (6.4)

equivalent to a parallel encoding of the direction 1√
3
(1, 1, 1).

Fig. 6.2 shows the system used to create these entangled states and perform the separable measurements

on them. Alice uses a tunable source of polarization entanglement based on spontaneous parametric down-

conversion (SPDC) in a pair of non-linear crystals (BBO) [73], as described in Chapter 2. These crystals

have their optic axes oriented such that when pumped by a UV laser (in our case, an Ar+ laser at 351.1

nm), the first crystal generates horizontally polarized down-conversion pairs (|HH〉) while the second crystal

generates vertically polarized pairs (|V V 〉). If the coherence length of the pump is long, those processes are

indistinguishable, resulting in the entangled state cos θ|HH〉+sin θ|V V 〉. The weight of the two terms—and

thus the degree of entanglement—is controlled by the pump polarization; the other 5 parameters in a general

two-qubit pure state can be set by wave plates after the crystals [74]. In order to achieve the high state

quality needed to be able to resolve the optimal fidelities of the different encodings, we also implemented

a phase-compensation technique, described in detail elsewhere [1]2. In each case, the required states for

our experiment were created with a fidelity greater than 98%. (In fact, although transferring the unitary

operator onto the state preparation step leads to particular relative phases, as in Eqn. (6.4), Bob’s separable

measurement is actually insensitive to these, depending only on the magnitudes.)

6.4 Results

We measured the transmission fidelity for three different two-photon protocols (Table 6.2; for comparison we

also list the measured fidelities if Alice sends only a single photon). First, we implemented the näıve approach

where Bob makes separable measurements. The second protocol used the optimal joint measurements for a

parallel encoding, while the final case used the optimal measurements for anti-parallel encoding. In each case,

we determined the fidelity for a large number of possible directions (see Fig. 6.3). The average orienteering

fidelities (Table 6.2) are near the theoretical values for all trials, thereby verifying the principle of using

quantum encoding for orienteering. In particular, the experimental results for joint measurements exceed

2SPDC generates very pure entangled states, but the specific state created varies over the collection solid angle. By inserting
a birefringent element that cancels this direction-dependent state rotation, we generate a more pure source of entangled photons
than previously available.
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Figure 6.2: Alice creates the necessary entangled states using parametric down-conversion in two BBO
crystals. By changing the first half wave plate (HWP) she can create a non-maximally entangled state of
the form cos θ|HH〉 + eiφ sin θ|V V 〉. The BBO phase compensators correct for a spatial dependence of φ in
the initial entangled state, allowing greater state purity [1]. Following these are several wave plates which
allow Alice to create an arbitrary pure two-qubit state. The plates marked “φ-plate” are wave plates (with
their optic axes at 0◦) which can be tipped to provide an arbitrary phase (φ) between |H〉 and |V 〉, while
the HWPs perform rotation by π about any linear axis on the Poicaré sphere. Bob uses a QWP, HWP, and
polarizing beam splitter (PBS) in each arm, enabling an arbitrary projection on each qubit. This allows him
to make the separable measurement for orienteering, and also to perform full state tomography [2].

class single spin separable joint parallel anti-parallel
sphere 66.5 [66.7] 73.2 [73.6] 74.0 [75.0] 78.2 [78.9]
equator 74.8 [75.0] 84.1 [85.3] 74.0 [75.0] 78.4 [78.9]

tetrahedron 69.3 [69.4] 73.6 [73.6] 82.5 [83.3] 94.9 [95.5]

Table 6.2: The average fidelities for each of the four protocols — the single-spin case and three variations
on the two-spin protocol. We also show the average when Alice is confined to transmitting a direction on
the equatorial plane, or picking one of the four tetrahedral directions. The (statistical) error on each value
is ±0.1%; the theoretical limits are shown in [ ].

the upper bound for separable measurements, and the the experimental results for the anti-parallel protocol

exceed the theoretical bound for parallel spin protocols.

In addition, we examined cases where Alice is restricted to only send a subset of possible directions.

For example, if Alice is constrained to sending states on the equatorial plane (equivalent to transmitting a

phase), the optimal fidelity of 85.3% [58] is realized using orthogonal separable measurements (also in the

plane). The greatest advantage of the anti-parallel encoding is observed when Alice chooses to send one

of the four tetrahedral directions, yielding a fidelity of 95.5% [65], much higher than the 83.3% using joint

measurements on a parallel encoding.

6.5 Discussion

Our results confirm the possibility of superior orienteering using quantum resources, i.e., that joint mea-

surements on anti-parallel spins outperform separable measurements. It is important to realize, however,
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Figure 6.3: For all four protocols, each of the directions indicated on this polar plot of the surface of
the Poincaré sphere was encoded. These include the four tetrahedral directions, the cardinal directions:
±{X̂, Ŷ , Ẑ}, four additional states on the equator at ±45◦ and ±135◦, and all eight points at the corner of
an inscribed cube: (±1,±1± 1)/

√
3. The center of the plot corresponds to the state |R〉 while the outer rim

represents |L〉, encoding the states ±ẑ, respectively. Linear polarization states lie on the middle circle, with
a polar angle φ of 90◦.

that none of these algorithms is actually optimal when Alice and Bob share a reference frame. In that case,

they actually do the best if Alice simply sends a 2-bit classical encoding of the direction, which amounts to

telling Bob which of the tetrahedral directions from Fig. 6.1 is closest to her desired direction. This gives an

average transmission fidelity of 85.3%, significantly higher than the optimal measurement on anti-parallel

spins (78.9%).

Quantum orienteering in the absence of a shared reference frame is interesting theoretically since it is

a recent addition to a relatively small set of quantum communication protocols. Nevertheless, realizing a

practical implementation is likely to be problematic. While a system using electron spins, nuclear spins, or

Rydberg atoms (which can also be used for a related protocol, transmitting a reference frame [75]) could

avoid the photon-implementation issues discussed above, it introduces others, most notably sensitivity to

stray magnetic fields, which would cause precession of the spins. For example, it seems unlikely that two

parties could be in a position where it was technologically difficult or impossible to share a reference frame,

yet they could control the magnetic fields well enough to communicate using quantum orienteering.

However, this opens up a new avenue for exploration: instead of agreeing on a global idea of a direction,

Alice and Bob may wish to measure the rotation applied by the background fields. This, for instance, would

allow partners with quantum computers to align their computational basis in the same direction, defined so
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that when Alice sends a ‘1’, that is what Bob receives, and similarly for ‘0’. Now, Alice is no longer trying

to transmit a physical direction, and so this application may be performed not only with massive spins, but,

e.g., with photon polarization. In this instance, two parties connected by a fiber optic cable, which in general

performs an arbitrary rotation of the polarization, may identify a basis in which they can communicate most

efficiently.
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Chapter 7

Conclusions

Currently, only a small but growing number of quantum communication protocols are known, and even fewer

have been experimentally implemented. Nevertheless, their existence illuminates some of the fundamental

differences between classical physics and quantum mechanics. Some of these protocols, such as quantum

key distribution, allow us to accomplish tasks impossible with only classical physics, while others, such as

orienteering, show improved behavior when implemented with quantum channels.

One particularly interesting avenue, which has received less attention, is the intersection between quantum

physics and special relativity. There are a few known communication protocols relying on special relativity,

such as secure coin tossing [76]. Coin tossing allows Alice and Bob to work together to generate a random bit

(heads or tails), even when they do not trust each other. It has been proven that no quantum information

protocol (or any standard classical protocol) can implement this securely [77, 78] – either Alice or Bob will

be able to cheat, swaying the outcome in their favor. However, a very simple relativistic protocol solves this

problem neatly: Alice and Bob each publicly declare a random bit, revealing it before they can see what

the other has chosen. The coin toss is simply the exclusive-or of Alice and Bob’s bits; therefore, either one

of them can defeat any cheating strategy by simply picking their bit randomly. The security of this simple

protocol rests on neither Alice nor Bob being able to alter their action based on the other.

In our relativistic QKD protocol we have shown that by combining constraints from both relativity and

quantum mechanics we can gain an advantage that neither holds alone. The only other protocol we know of

to combine the two is secure bit-commitment [79, 80], which has not yet been implemented. The essence of

all three of these protocols with a relativistic component is that they force the parties involved to commit to

a decision before some in-transit information reaches them, a capability intrinsic to relativity and its notion

of space-like separated parties.

Quantum orienteering is a purely quantum protocol, but one that shows the practical inequivalence of

different quantum systems. The intent is to transmit a direction in space without referring to an established

reference frame. We implemented the protocol using photon polarization, which is formally identical to the

originally proposed spin-1/2 particles. However, while the results are the same, the interpretation must be
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different: electron spin has a natural mapping to physical space, while photon polarization does not – in

practice, communicating a direction with polarization states does require a shared reference frame. Without

the shared frame, a linearly polarized photon only naturally identifies an axis, not a unique direction. For

instance, if a photon is vertically polarized (in some reference frame) it cannot distinguish between pointing

“up” and “down”.

The essence of the practical difference between photon polarization and electron spin is that the photon

massless. For a massive particle such as a neutron or electron, the spin, and therefore the angular momentum,

always points in a definite direction. It is always possible to transform into the rest frame of the particle, and

measure its angular momentum. Photons are massless, and therefore have no rest frame. In particular, they

are spin-1 particles whose mz = 0 states are forbidden. This prevents them from pointing unambiguously

in any direction. Other quantum systems also do not communicate direction, simply because the physical

quantity is not directional. For instance, encoding into the state of an atom may or may not encode

directional information, depending on the symmetry of the states used. The ground state of an atom is

spherically symmetric, so conveys no direction, while some excited states have an electric dipole. It would

even be possible to select an atomic qubit where one basis state was rotationally symmetric and the other

was not. All of these factors are normally ignored, assuming that “all two level systems are equivalent”.

Certainly they are mathematically equivalent; however, for some types of communication the specific type

of system is important.

These protocols extend the field of quantum communication, still in its early stages. While QKD already

shows promise as a practical communication tool, other protocols are only in the development stages. It is

likely the true impact of quantum communication will not be realized until it can be coupled with quantum

computing. Quantum channels are not merely a convenience, but a requirement for connecting quantum

computers. In this, we may find applications for protocols similar to quantum orienteering, used to align

the computation basis between two separated computers or registers within a single computer.
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Appendix A

Cavity mirror alignment

The key to building a useful optical delay line is selecting the optimal configuration. A cavity constructed

using cylindrical mirrors can be described by three parameters, N , mx, and my, as described in Chapter 3.

N is the total number of round trips, while mx and my describe the trajectory of the beam. N , mx, and my

must be relatively prime, and mx < my < N (the solution is symmetric under exchange of mx and my so we

can take either to be smaller). The first step is to select an appropriate set of parameters. From Eqn. (3.6)

we find that the eigenvalues of the ray matrix A(d, θ) are:

φ1 =
πmx

N
and φ2 =

πmy

N
. (A.1)

The ray matrix A(d, θ) is a function of two settings, d, the spacing between the mirrors, and θ, the twist

angle. The best way to pick a configuration is to numerically solve the equation

eig(A(d, θ)) = {±φ1,±φ2} (A.2)

for all values of mx and my with the desired N .

To select a specific solution from the many, the most important factor is that the nearest bounce to the

central coupling hole be as far from it as possible. To do this, we calculate the entire trajectory of the input

ray as it propagates through the cavity. Specifically, we select an appropriate input ray x0 and calculate the

position of each bounce according to the formula

xi = Aix0. (A.3)

A good first choice for x0 is just (0, 1, 0, 1). That is,the initial position in x and y is zero, while the slope is

1. For each cavity configuration, find the ratio of the closest approach to the origin to the furthest deviation

from the origin. If the scale is set such that the furthest deviation is within a finite bound (the size of the

mirror), that allows an exact calculation of the nearest approach. The most stable, lowest-loss configuration

52



Figure A.1: Example spot patterns for orientations very close to θ = 90◦. Left: When the twist angle is
exactly 90◦, the reflections lie on an ellipse. Right: If the the twist angle is near, but not exactly 90◦, the
pattern roughly follows the ellipse, but is distorted, as shown.

will be one where the nearest approach is as large as possible.

Once the target configuration is chosen, we must attempt to align the mirrors to match the predicted

d and θ. This is a process in several steps. First, we align the two mirrors in a cavity configuration

with separation very close to the calculated value and the axes of curvature orthogonal. We then shine an

alignment laser through the coupling hole in the first mirror onto the center of the second mirror. We adjust

the tip and tilt of the second mirror so that the beam returns directly through the coupling hole. This

aligns the second mirror to normal to the cavity axis. We now slightly misalign the second mirror so that

the returning beam reflects near the coupling hole instead of passing through it, and adjust the tip and tilt

of the first mirror such that it too is normal to the cavity axis.

Once the mirrors are aligned carefully on the cavity axis, we attempt to reach a known setting of twist

angle and separation. To do so, we adjust the alignment laser off of the central axis. The beam will be

shown to roughly trace out an ellipse. When the axes of the two mirrors are actually orthogonal, the spot

pattern on each mirror will indeed be an ellipse. If the axes are slightly off, the elliptical pattern will distort,

as shown in Fig. A.1. Adjust the twist angle until this pattern is as closely elliptical as possible. Slight

variation in the radii of curvature of the mirrors may prevent perfect alignment.

At this point, we could set the separation exactly by counting the number of reflections on the elliptical

spot pattern, and then comparing that to the simulations. However, the twist angle is more difficult to set

than the separation. As long as the initial placement is accurate within 1 cm or so, it is usually possible

to go directly from the elliptical alignment to the target configuration. We twist the second mirror by the

correct number of degrees. This will bring about something very close to the target spot pattern. We then

push the translation state back and forth by hand in the longitudinal direction, watching for the desired

pattern. Next we adjust the tip and tilt of the cavity end mirrors to adjust the overall spot pattern size, to

make sure that the reflections stay safely away from the outside edges of the mirrors.
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The final step is mode matching. In order to have high efficiency, we want the beam to be uniformly

small when it reflects off of the end mirrors. While we presently do not have detailed calculations for this,

it appears that a reasonably good approximation is to gently focus the input beam such that there is a

beam waist near the center of the cavity. The periodic focusing behavior of the cavity makes it relatively

insensitive to the initial focusing, as long as the input beam is not too large or diverging. The output beam

is usually only slightly separated from the input. At a distance of ∼1 m from the cavity entrance, the output

beam is far enough away to pick off using a small mirror or prism.

These techniques have been sufficient to align delay cavities of up to a few microseconds of delay. With

very high-reflectivity mirrors, it should be possible to have efficient storage for 10s of microseconds. Con-

figurations with that long of a delay will be more sensitive to alignment. It is possible these techniques will

not be effective in that case. Probably the best way to achieve these more sensitive alignments is to first

identify a nearby solution of lower N , then calculate the small adjustment needed to move to the larger N

configuration. In this way it should be possible to generate delay lines with thousands of cycles, for > 10µs

delay time.
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Appendix B

Mirror Surface Quality and Cleaning

In order to achieve low loss storage cells, we require very high reflectivity mirrors. The highest reflectivity

mirrors available are multi-layer dielectric mirrors coated using ion beam deposition. This process has

been used to create resonant cavities with a Q greater than 106 and a corresponding mirror reflectivity

R > 99.999% [25]. Mirrors of this quality would potentially allow multi-pass storage cells to have extremely

low loss, comparable to that of single-mode fibers. However, the reflectivity of the mirrors used in the storage

cavity describe in Chapter 3 are considerably lower, at 99.8%.

The first consideration is the manufactured quality of the mirrors. Ion beam deposition provides very

uniform layers; however, the mirror quality is limited by the smoothness of the bare substrate. Highly

polished flat or spherical mirrors are widely available, but we require cylindrical surfaces for our delay

cavity. These are harder to manufacture and not widely available with such high surface quality. Fig. B.1

shows the surface of a cylindrical mirror manufactured by HellmaOptik and a flat mirror manufactured by

MLD Technologies. Both mirrors have a multi-layer coating composed of alternating layers of SiO2 and

Nb2O5 applied by MLD technologies. The Hellma cylindrical mirror has a number of features which will

cause scattering. Primarily, the surface is covered with 7 nm “peaks” which are likely either nano-particles

that stuck to the surface and were coated over, or peaks that are part of the substrate. These features

dominate the 1.2 nm RMS roughness. In the area between these peaks, there is also considerable variation

in height, indicating that even if those bumps are removed, the surface would be rougher than the flat MLD

substrate.

Surface roughness causes scatter, which appears to be the primary loss mechanism for our storage cavity

mirrors (we measure the transmission through the mirror to be less than 0.01%, and it is unlikely that there

is significant absorption in the dielectric coating). Scattering from a dielectric surface is a complex process

that depends on the exact structure of the surface defects involved. However, if the surface is characterized

by Gaussian noise with an RMS roughness much smaller than the wavelength, the integrated scatter over
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Figure B.1: A: AFM scan of cylindrical cavity mirror coated with ion beam deposition B: Flat mirror with
the same coating. The z-range on each scan is 10 nm. The flat mirror has an RMS roughness of 0.21 nm,
while the cylindrical mirror roughness is 1.2 nm. In addition, the cylindrical mirror surface is dominated by
7 nm nanoparticles.

all angles (total integrated scatter, or TIS) is approximated by [81]

TIS = 1 − e−(4πδ cos(θ0)/λ)2 , (B.1)

δ =
λ

4π cos(θ0)

√
TIS. (B.2)

Here, λ is the wavelength of light (670 nm), θ0 is the angle of incidence (0◦), and δ is the RMS roughness.

To explain the 0.2% loss we see requires a surface roughness of 2.4 nm. This is greater than the roughness

measured from the AFM scans of 1.2 nm, however, much less that the 7 nm size of the nano particles on

the surface. Since the surface structure shown in Fig. B.1 is definitely not Gaussian, the model given here

may not directly apply. More investigation would be required to determine whether this scattering model

is insufficient or there is some other form of loss. Regardless, this roughness is of the correct order for the

observed loss.

Additionally, the reflectivity degraded somewhat with time. This indicates that the surfaces became

contaminated. We investigated a number of cleaning techniques to attempt to restore the surface to its

original quality. All cleaning processes require manipulating the surface of the mirror, and therefore have

some possibility to cause damage. Therefore, we attempted to proceed from perceived less-invasive techniques

to more vigorous cleaning. In addition to potentially avoiding unneeded steps, the early cleaning processes

remove large dust particles which could scratch the surface if dragged along it later. Below is the order
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we arrived at. Ultimately, while none of them caused permanent surface damage, most of them provided

no discernible benefit, consistent with the belief that the most prominent problem was the inherent surface

quality.

The first line of cleaning is non-contact dusting, using compressed nitrogen. The nitrogen is clean and

dry, so avoids leaving residue on the surface, or causing scratches from spraying dust onto the mirror. This

technique removed a few visible dust particles, but did not noticeably affect the reflectivity. Presumably,

the dust did not cover a significant fraction of the surface area. The second technique is a solvent rinse. We

mount the mirrors at an angle, and spray organic solvent along the top edge, allowing it to flow over the

surface of the mirror, then use compressed nitrogen to blow the remaining liquid off the surface to minimize

the solvent residue. We used acetone first, which we expect to remove most any hydrocarbons on the surface,

but will itself leave a residue, then followed with either 2-propanol or methanol. These solvents are intended

to remove the acetone residue. We again saw no noticeable improvement after this cleaning. The next

technique is drop-and-drag with lens tissue and solvents. It is important that the surface be free from large

dust particles which could scratch the surface during this procedure, so should only be used after at least

dusting the surface with compressed air or nitrogen. Here, a piece of lens tissue is placed on the surface

of the mirror, then wet with a solvent and dragged off the surface. Friction from the lens tissue should

remove contaminants more tightly adhered to the surface. Again, to avoid solvent residue, this should be

done either with methanol only, or acetone followed by methanol (or 2-propanol). The next technique is

OptiClean. This is an acetone-based gel which is applied to the surface. It then dries into a plastic film,

which is peeled off, removing contaminants with it. It is supposed to both dissolve organic contaminants

and trap particulates in the film, while reducing the risk of dragging particles across the surface. Of all

the procedures we tried, this is the only one which noticeably improved the mirror reflectivity, increasing it

from 99.7% to 99.8%, at or near the initial level. At the suggestion of MLD, we tried two more procedures.

First, we soaked the mirrors in warm DI water with Alconox soap for several hours, followed by DI water

and solvent cleaning to remove the soap residue. Next, we baked the substrate in a low-pressure argon

environment, intended to volatilize any organics on the surface, while preventing oxidation. Again, neither

of these procedures improved the reflectivity, but neither did they appear to damage the surface.

We believe this cleaning regimen should remove contaminants with as little chance of damaging the

surface as possible. While only the OptiClean procedure yielded a noticeable improvement in our case, this

is probably due to the mirror surfaces starting relatively clean. They are mounted vertically, which reduced

the amount of dust, and haven’t been exposed to many likely sources of contamination. The storage cavity

is mounted inside a Plexiglas enclosure which reduces wind and dust, though may increase the organic
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contaminants, especially if the glue used to assemble the enclosure was not cured completely.

It should be possible to construct a delay line with low loss and long (several microseconds) delay. The

primary barrier seems to be the availability of sufficiently high quality cylindrical substrates. It is difficult

to tell if this is an intrinsic problem, or simply a lack of demand for high quality cylindrical optics.

58



Appendix C

Low Latency Communication

Low-latency communication is a key component of relativistic quantum key distribution, as described in

Chapter 5. Communication latency directly translates into increased storage requirements with the attending

loss. Most common communications protocols (such as Ethernet) trade latency for bandwidth. By bundling

data into large blocks, they decrease the overhead associate with each transfer at the expense of increased

latency. For our application, this is the opposite of what we want. A single basis selection only requires 2

or 3 distinct messages, but the latency is critical.

We built a suitable low-latency communication system using a Xilinx 9500 series CPLD (complex pro-

grammable logic device). This device is an array of logic gates connected to flash memory that allows

programmable interconnects between the gates, enabling a sort of virtual bread-board for logic systems.

More sophisticated devices known as FPGAs (field programmable gate arrays) typically provide more fea-

tures (such as memory and special purpose connections) and operate faster. However, the CPLD is simple

to use, and has high-current outputs which allow it to easily drive other devices. In particular, we use the

output directly to drive a laser diode.

We programmed the CPLDs using VHDL (VHISC Description Language), a programming language

widely used for this purpose. This language allowed us to define a state-machine. A finite state machine

(FSM) is a computing device that can be in one of a finite number of internal states, stored in a small

amount of memory. The FSM receives a clock input, and on each clock cycle moves to a new state in a

way that depends on the state of the inputs, as well as the current state of the machine. Each output is

then defined by whether it is “high” (i.e., logical 1, +3.3 V), or “low” (i.e., logical 0, 0 V) for each state. A

simplified version of the modulator state machine is shown in Fig. C.1.

We used a 5-bit encoding for the encoded messages. While the three bases could be communicated with

only 2 bits, it is convenient to use 5 for a number of reasons. The first consideration is to give each code

a start bit of 1. Since a photon detection can come at any time, it is needed to instruct the demodulator

to begin decoding. We also disallow 10000 as a code, since a single glitch will be recognized as a valid

signal. The second consideration is that we use a discriminator to recover the signal from a photo-diode.
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IDLE

HV1 HV5HV4HV3HV2

DA1 DA5DA4DA3DA2

RL1 RL5RL4RL3RL2

Figure C.1: Simplified finite state machine (FSM) for the modulator. The default state is idle. If one of
the quantum basis inputs is triggered, the state machine follows the transition onto one of the three paths.
Each clock cycle then moves the FSM down the path until it reaches the fifth state. The FSM then returns
to the idle condition. The states marked with a red circle are those in which the laser output is on. This
sets the output code for each basis.

The discriminator responds to a rising edge with a pulse of a single clock cycle. Thus, we do not allow two

sequential 1s.

The core of the modulator has 16 states. The initial state is the quiescent state, in which no signal has

been seen recently. If exactly 1 of the 6 input signals is triggered (each corresponding to one of the 6 possible

polarizations in the six-state QKD protocol), the device transfers into one of 3 states (each corresponding

to one of the bases used in the six-state protocol). From there, each clock cycle causes the device to move

along a linear chain of states. Each machine state of each chain corresponds to a single output bit for the

selected basis. Upon reaching the end of a chain, the device returns to the idle state, and awaits another

signal.

This design is functional, but we have made a number of enhancements to this simple 16-state machine.

The first is to allow a switchable output delay. We added a bank of 3 switches that allow the output to

be delayed between 0 and 7 clock cycles. This is useful because it allows us to ensure that the classical

signal is not transmitted until after the quantum signal (the precise security requirements are discussed in

Chapter 5). We also add a programmed dead-time. The modulator will not respond to a photon click for a

few cycles after it finishes transmitting a signal. This ensures that the demodulator is completely reset by

the time the next signal begins. Finally, the modulator sends a signal to Alice’s computer indicating which

of the six states triggered the modulator. Because Alice’s IO card only samples at 10 MHz, the demodulator

holds this signal for several clock cycles to make sure she sees the signal.

The demodulator operates similarly to the modulator. The internal state of the demodulator is captured

in a shift register that holds the last 5 bits received. Each clock cycle, the 4 most recent bits are shifted down
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one, while the input sampled is loaded into the first bit of the register. When the entire register corresponds

to one of the magic key sequences, several outputs are triggered. One set of outputs triggers the Pockel’s

cell to set the analysis basis for the DA and RL bases. A second set of outputs goes to Bob’s computer, and

in the same fashion as with the modulator, must hold those signals for many clock cycles. After all of the

signals are activated, the demodulator resets itself and waits until the shift register again recognizes one of

the basis selection codes.

The demodulator must be able to operate with a clock that is not phase-locked to the modulator. The

clock rising edge can come at any time during a bit, and the relative phase between the clock and signal may

drift. One way to solve this is to use clock-recovery, a technique that extracts the clock directly from the data

channel. This ensures that the clock is always synchronized to the data stream, but is not easy to implement

in our system. Instead, we implement two independent demodulators on the same chip. The shift register

for the second demodulator is clocked on the falling edges of the clock signal. This makes it sample the input

180◦ out of phase with the normal rising edge demodulator. As long as the clocks are close in frequency, one

of the two demodulators will correctly recognize every signal. If the two demodulators generate the same

output, or only one recognizes a valid message, the message is output. If the two demodulators disagree,

there is no way to determine which is correct, and the message is ignored. This is important because basis

selection errors can compromise the security of the quantum key distribution protocol, but dropped messages

do not.
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