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ABSTRACT

A quantum random number generator (QRNG) is one which re-

lies on a physical process, extracting randomness from the inherent

uncertainty in quantum mechanics. This is to be contrasted with

current pseudo-random number generators (PRNG), which although

useful, are in fact deterministic: they always yield the same output

sequence given the same input seed. This is unacceptable for some

applications, such as quantum cryptography, which promise uncon-

ditional security. Unfortunately, the rate of QRNGs is still too slow

for practical commercial quantum key distribution systems (which

presently run at speeds over 1 GHz).

Previous QRNGs have been implemented, with the most common

relying on the behavior of a photon at a beam-splitter, producing

a random bit dependent on which of the two paths in which the

photon is detected. However, these are totally limited by detector

saturation rates, typically in the low MHz range. We previously

proposed that by instead using the time interval between detections,

much more random information could be extracted per detection

event. Specifically, instead of only one bit per detection, in principle

one could extract as many bits as the measurement time resolution

would allow.
Over the past two years, we have been exploring this approach

and have constructed a functional QRNG operating at rates up to

130 Mbit/s. The random output has been tested and has passed all
common cryptographic random number tests.
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CHAPTER 1

INTRODUCTION

The need for randomness arises frequently in a broad spectrum of

applications, ranging from numerical simulations and statistical

analysis to encryption. Methods for achieving this randomness

have advanced as the applications increase, evolving from simple

mathematical techniques that generate pseudo-random numbers to

physical sources of true random numbers. Dependent on the

constraints of the application involved, it is often sufficient to use

numbers that are not actually random, but random enough. These

can be realized, e.g., by a pseudo-random number generator which

performs mathematical operations on data based on a seed,

typically a very large number. Unfortunately, such schemes are

deterministic: the same initial seed will always create the same

sequence of pseudo-random numbers. As computing power

increases, this is no longer sufficient for many cryptographic

applications, as it is possible for these algorithms to be

compromised. In particular, one of the promises of the recent area

of quantum cryptography is unconditional security based on laws

of physics [1]. For such applications it is critical to have true

sources of randomness.

A quantum random number generator (QRNG) exploits the

inherent randomness present in quantum processes to create

random numbers. Common implementations are based on the

interaction of photons with a beam-splitter [2, 3, 4], where a

random bit is determined by which path a photon takes. More

recently, it was realized that one can use the time between

successive photons in a single path to generate randomness

[5, 6, 7]. We have used this method to achieve random number

generation rates in excess of 100 MHz.

In the following thesis we start by exploring different types of
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random number generators. Our current QRNG implementation is

then described and evaluated. Further quantization of the amount

of available entropy is introduced, and techniques to maximize

that entropy are discussed. Possible detrimental issues, such as

photon-number squeezed light, are introduced, and our methods

for eliminating or compensating for them are presented. Finally,

several future improvements and modifications are brought forth

and evaluated.
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CHAPTER 2

RANDOM NUMBER

GENERATORS

A random number generator (RNG) is any device that is designed

to generate data that appear to have no pattern. Having existed

for centuries, RNGs have steadily evolved from simple mechanisms

such as the flipping of a coin or the shuffling of cards into much

more complex computational and physical methods. The driving

force behind this evolution has primarily been the parallel

development of methods to compromise the security afforded by an

RNG. Given that RNGs are typically used for security purposes,

when they are broken, the consequences can be very costly. The

purpose of this chapter is to introduce the reader to several

different types of random number generators, outline the

characteristics of each, and provide enough background so that the

research presented can be easily and thoroughly understood.

2.1 Pseudo-Random Number Generators

With the advent of modern computing came a revolution in the

way random numbers were generated. Instead of using an

unpredictable physical process, RNGs began to harness the newly

available computational power and shifted into highly complex

mathematical algorithms. These algorithms can produce very long

strings of data that appear to be random but are in fact

completely deterministic and chosen by some initial state, or

“seed.” Because their output is not truly random, these are

referred to as pseudo-random number generators (PRNGs). Two

of the most commonly used PRNGs today are variations of linear

feedback shift registers (LFSRs) or linear congruential generators

(LCGs). As illustrated in Figure 2.1, an LFSR is simply a register
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whose input is a linear function of its input state. Because the

exclusive-or and its inverse are the only linear logical operations on

single bits, an LFSR is a shift register whose output is some

combination of the xor of its register value. An LCG, on the other

hand, is a PRNG adhering to the recurrence relation shown in

Equation (2.1):

Xn+1 = (aXn + c) (mod m) (2.1)

In this model Xn is the sequence of random values, m is the

modulus, a is the multiplier, c is the increment, and X0 is the seed

[8]. Additional constraints are placed on the choices of these

parameters, such as the requirement that c and m be relatively

prime. This is one of the reasons for the large effort being put into

finding very large prime numbers.

(a) (b)

Figure 2.1: Examples of LFSR implementations with a seed state size of n = 2
bits. Bits in (a) have been generated using a seed state of “00,” resulting in
completely periodic results while bits in (b) have been generated using a seed
state of “01,” resulting in the maximum period of 2n − 1.

Although these models are straightforward and easy to

implement, they come with disadvantages. Most importantly,

every type of PRNG is inherently periodic. Given a seed state of n

bits, then the maximum period of any given PRNG cannot exceed

2n. As illustrated in Figure 2.1(a), if a bad seed is chosen, the

period of the output can be very short. LCGs suffer from this

problem more than other PRNGs, as their lower bits typically have

exceptionally short periods. Because of this periodicity, PRNGs

cannot pass many of the statistical suites in use today. Any

exception is referred to as a cryptographically secure

pseudo-random number generator (CSPRNG) and must undergo

rigorous testing before being accepted by the cryptographic

community.

As mentioned above, the output of a PRNG only appears to be

random. Given the same initial seed, every successive run will
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produce exactly the same result. Although this fact is seemingly

catastrophic from a security standpoint, this is not the case.

Although the seed mechanism makes the PRNG completely

deterministic, as long as the seed is kept “secret,” then the

computational power needed to break most PRNGs is sufficient.

Despite the periodic nature, PRNGs with seeds in excess of 128

bits are commonly used (as searching through 2128 possibilities in a

reasonable amount of time is computationally infeasible), and they

are currently the most widely used and commercially viable option.

2.2 Physical Random Number Generators

Physical random number generators (PhRNGs) rely on complex

physical processes to generate randomness. It is commonly

believed that PhRNGs are true random number generators, as the

processes that drive them are thought to be unpredictable. Unlike

their PRNG counterparts, which are designed to produce virtually

no bias (equal amount of 0s and 1s), PhRNGs occasionally do not

possess this quality. Instead they generate a certain amount of

entropy, which is then compensated for at a later time. In

information theory, this is referred to as Shannon entropy [9], and

the amount associated with a given distribution of N events is

given by S = −∑N
i=0 Pi log2 Pi, where Pi is an individual

probability, corresponding to an outcome i, in the probability mass

function of P . This entropy is measured in bits, so an entropy of 1

random bit per output bit is ideal. To reduce any inherent bias,

compensation techniques such as hash functions are used; however,

these are in effect pseudo-random number generators themselves.

Physical random number generators come in many forms,

ranging from the simple (such as roulette wheels and lottery balls)

to the more complex, such as atmospheric noise. A quantum

random number generator, the focus of the research presented here

and the subject of the next section, is a type of PhRNG as well.

However, instead of relying on a complex physical process, a

QRNG relies on the uncertainty present in relatively simple

quantum processes to generate randomness.
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2.3 Quantum Random Number Generators

As stated above, a QRNG exploits the inherent randomness

present in quantum processes to create random numbers. Several

QRNGs based on the quantum properties of light have been

proposed and implemented. Most previous systems [2, 3, 10, 11],

such as the one depicted in Figure 2.2 rely on the behavior of an

incoming photon at a beam-splitter to generate data.

Figure 2.2: Example of a common QRNG implementation. Photons are
directed along one of two paths by a beam-splitter and are registered by the
corresponding detector.

Dependent on which detector registers the incoming photon, a 0

or 1 is generated. This approach has the significant drawback that

each photon can create at most only one bit of data, and in

practice much less, since it is only detected events that contribute.

Thus, the scheme is limited by the detection speed: one can

generate random bits only at rates substantially below the detector

saturation limit. Implementations with multiple detectors, while

somewhat mitigating this problem, can suffer from bias created by

differing detection efficiencies. Recently it was shown [7] that such

bias could be eliminated by using a single detector, and comparing

the time intervals between three successive detection events.

However, this method is limited to a maximum of one-half bit of

randomness per detection, so it is even more constrained by

detector saturation.

Our implementation [6] also uses only a single detector to

generate the data, but it uses the photon arrival time itself as the

quantum random variable, as shown in Figure 2.3.

As originally proposed [5, 6], the time between successive

photons is divided into time-bins, which are created by a high

resolution counter operating in parallel with the detector (in

principle this could also be combined with a beam-splitter and two
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Figure 2.3: Example of our QRNG implementation. Time intervals between
successive registered photons are translated into time-bin values. Because the
average number of time-bins between detections can be quite large, one can
distill multiple random bits per detection event.

detectors to obtain an extra random bit per detection). A given

detection time interval can therefore provide multiple random bits

per detection event. If we had a constant waiting time distribution,

for which every time-bin had the same probability of occurring,

then given n bins, we would generate a perfect log2(n) random bits

per detection event. However, the stimulated emission of photons

from a semiconductor device is believed to be a process in which

events occur continuously and independent of each other, i.e., a

Poissionan process. The number of events that have occurred up

to time t is given as N(t), and the number of events in the time

interval [t, t + τ ] is characterized by

P [N(t + τ ) − N(t) = k] = e−λt(λt)k/k!, where λ is the average

number of events per unit time. Consequently, the time between

arrivals is the same as the time until the first arrival (since they

are all independent) and is therefore given by

P [N(t) − N(0) = 0] = e−λt(λt)0/0! = e−λt.

As shown in Figure 2.4, the waiting-time distribution is a

decaying exponential, with average value λ. As such, the entropy

associated with each detection will be less than that if the

distribution were simply uniform. In order to compensate for this

lack of randomness, a data hashing technique must be used to

“whiten” the random number string, thereby preparing a shorter

but more random string, with randomness approaching one

random bit per bit.

A hash function is simply a mathematical technique that

converts a large amount of input data into a smaller fixed-length

string. A cryptographic hash function, such as SHA [12], has more

stringent constraints suited for tailoring its output to meet the

demands required for secure communication. Among these, and of
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Figure 2.4: Actual (jagged trace) vs. theoretical (smooth curve) waiting-time
distribution of raw data given an average detection rate of 6 MHz and a
time-bin resolution of 5 ns. Here we have chosen the first time-bin to be after

the 45-ns dead-time of the detector. Deviation from the expected decaying
exponential is due to Poissonian noise and timing effects within the system.

additional importance when applied to an RNG, is the requirement

that all possible outputs occur with the same probability. An

example of whitened data from our QRNG is shown in Figure 2.5.

This data has passed rigorous statistical tests, including the NIST

test suite [13] and the DIEHARD statistical tests [14].

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 2.5: Final whitened data output from our QRNG.

Unfortunately, as is the case with all hash functions, sometimes

collisions occur: cases where different inputs map to the same

output. Because of this possibility we need to supply some extra

entropy into the input buffer to make sure each hashed output has

approximately the same probability. Further quantization of the

amount of excess entropy needed is explored in Chapter 3.

2.4 Implementation Details

The implementation detailed here has four major components:

photon production, optical attenuation, photon detection, and
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data processing and storage. Although our initial experiments used

an LED light source, we now employ an attenuated laser diode, for

two primary reasons. First, the light emitted from a typical LED is

in principle in a thermal state (i.e., with photon bunching over a

small interval), whereas laser emission is ideally in a coherent

state; this advantage is somewhat spurious, however, as the

amount of bunching in an LED is minuscule, and in any event, our

dead-time deletion (the time after a detection during which the

detection device is disabled) automatically rejects such closely

spaced photons. Second, it has been shown that a simple

current-limited LED circuit can, under certain conditions, actually

produce photon-number squeezed light [15]. The resulting

sub-Poissonian waiting-time distribution would display lower

random fluctuations than that of a laser diode. As discussed

below, the random deletion afforded by our strong attenuation

should completely eliminate any such squeezing correlations.

Nevertheless, to avoid all such concerns, we deemed it preferable to

use the system with the simplest characteristics (the laser diode).

We have used a variety of techniques to attenuate the light to

the desired photon flux. If we imagine that the photons are

emitted in a perfect coherent state, governed by Poisson statistics,

then in principle any random deletion process will not alter the

statistics. In fact, even if the photons are produced, e.g., in a

squeezed state [15], the correlations will be washed out by the

large amount of attenuation required [16] — we typically operate

with over 120 dB of optical attenuation, so that a given photon

from the light source has less than a 10−6 chance of making it to

the detector. Given this level of attenuation, numerical simulations

show no noticeable difference in the amount of entropy per

detection between a coherent state and a heavily attenuated

initially perfect number-squeezed state.

Since we rely on the independence of the photon arrival times, it

is important that the physical process used to control the flux not

introduce unwanted (or unknown) correlations. For example,

periodically gating the laser diode so that it is operating only for a

short time would not be appropriate, even though the average flux

might be as desired; in that case the entropy would be greatly

9



reduced. We have implemented the necessary attenuation using

three methods: spatial-mode selection (only collecting a small

fraction of the emitted light), standard reflection neutral density

filters, and a series of crossed polarizers. As predicted, in all cases

we observed no significant difference in the final photon statistics,

i.e., the waiting-time distribution was unaffected. Note that in the

case of polarization filtering, we are essentially relying on the same

intrinsic quantum mechanical randomness that is assumed for

many quantum cryptography implementations [1]; the security of

the latter depends on the fact that a photon’s transmission

through a polarization analyzer is a truly random quantum event.

Similarly, the reflective neutral density filters are an extreme limit

of a simple beam-splitter.

The transmitted photons are detected by a single-photon

counter, in our case an avalanche photodiode (APD; id Quantique

100-MMF50-ULN). Although this device’s 45-ns dead-time implies

a saturation rate of over 22 MHz, in practice the device can only

sustain a continuous count rate of 11 MHz, resulting in random

number generation rates up to 130 MHz. We have also run

successfully using a Perkin-Elmer APD (SPCM-AQR-13). In this

case, however, we were further limited to rates of 5 MHz (to avoid

damaging the detector); after all processing the SPCM-based

system reached random number generation rates up to 20.1 MHz.

The detector pulse is read by an ACAM TDC-GPX

Time-to-Digital-Converter [17]. This relatively inexpensive ($300)

device is able to resolve detections with up to 27-ps accuracy. The

APD pulses are directed toward the “stop” channel, while the start

is periodically reset with a 100 kHz pulse to reduce any drift

effects within the device. The time interval data is read by a field

programmable gate array (Xilinx Spartan 3 FPGA) and input into

a register. The number of bits assigned to each detection is

dependent on our expected entropy per detection, and

consequently on the average detection rate (e.g., it would not be

appropriate to assign 8 bits to each interval if the average rate

corresponds to only 6 bits of entropy per detection). The data

string for each detection event is truncated to this calculated

length, and concatenated in a register until enough data is present
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to input into the hash function.

Finally, the hashed data is output through the PCI port on the

FPGA and stored on a desktop PC, where further manipulation

and testing can occur. Figure 2.6 below shows the data flow of our

implementation.

Figure 2.6: Data flow diagram for our implementation. Photons emitted from
the laser diode cause the APD to output pulses which are registered by the
counter. For each new detection, depending on the time elapsed between
subsequent detection events (as determined by the TDC-GPX), the counter
produces a random string. These counts are then accumulated until enough
random data is present to “whiten” using the SHA-256 hash function. The
final data is then output through the PCI bus.

The QRNG presented here has achieved a final output rate of

130 MHz. Additional methods of increasing this rate will be

discussed in Chapter 5. This rate is well above that of currently

commercially available QRNGs, which have random number

generation rates of 4 MHz per detector [18].

11



CHAPTER 3

ENTROPY

As discussed in the previous chapter, the processes that drive a

PhRNG may be random, but not necessarily ideal. Instead of every

possible output value having an equal probability of occurring, an

inherent amount of bias may be present. In the case of the QRNG

detailed in this thesis, the output probabilities take the form of a

decaying exponential (instead of the ideal flat distribution). When

this is the case, it becomes increasingly important to properly

quantify the amount of randomness that is generated. In

information theory this is also analogous to the amount of

information contained in a message, and is referred to as entropy.

When used in this context, the term entropy typically refers to

Shannon entropy [9] and will be referred to as such for the

remainder of this thesis. There are, however, related measures of

entropy that are of special interest in RNGs. In particular, the

min-entropy [19] is a measure of the largest amount of information

an attacker could gain from a single guess; it is often used in

evaluating randomness in cryptographic systems. In this chapter,

we will explore both types of entropy, as well as ways of

maximizing the amount output in relation to our QRNG

implementation.

3.1 Shannon Entropy

As discussed in Section 2.2, the Shannon entropy of a message

with N possible outcomes is given by the equation

S = −∑N
i=0 Pi log2(Pi), where Pi is the probability of the ith

outcome. For random number generation, an ideal distribution, as

shown in Figure 3.1(a), would have equal probability for each
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outcome, giving its Shannon entropy the maximum value of exactly

log2(N) bits. Our QRNG, however, has an output waiting-time

distribution of the form e−λt, where λ is the mean value and t is

the time until the next photon is detected (t = 0 corresponds to

the detection of the previous photon), as shown in Figure 3.1(b).
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Figure 3.1: Probability mass functions for (a) uniform and (b) Poissonian
waiting-time distributions.

For our implementation, a possible outcome X corresponds to a

time-interval measurement between two successive photon

detections. The amount of entropy that can then be extracted

depends primarily on the rate of incoming detections and the time

resolution with which they can be measured. By increasing the

resolution, more possible values can “fit” into the decaying

exponential probability distribution, and thus the amount of

available entropy is increased. Since the available entropy increases

as more time-bins become resolvable, a reasonable approximation

is that the average amount of entropy per detection increases by

one bit every time N increases by a factor of two, as shown in

Table 3.1.

Table 3.1: Example average entropy per detection for a rate of 11 MHz.

Time Resolution (ns) Average Entropy (bits)

50 2.05
25 3.05
10 4.45
5 5.51

0.1 11.26
0.05 12.27

In the limit that infinitely small time resolution can be obtained,

an infinite amount of bits can be extracted from any detection. It

is important to mention, however, that having a resolution less

than jitter of the equipment could introduce unwanted bias. This
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argument is somewhat spurious, however, as the random deletion

afforded by our detector’s dead-time (time after a detection during

which the detector will not register incoming photons) eliminates

this effect from the final data.

3.2 Detection Speed vs. Shannon Entropy

While increasing the resolution results in a logarithmic increase in

the rate of entropy generation, increasing the source rate has a

somewhat different effect. In actuality, although increasing the

rate results in more detections per second, it also lowers the

available entropy per detection, as the average time-bin value gets

lower. As shown in Figure 3.2, increasing the detection rate causes

the waiting-time distribution to “shrink;’ and become more

predictable. In the limiting case, all detections fall into the first

time-bin and no entropy is generated.
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Figure 3.2: Theoretical Poissonian waiting-time distributions for our QRNG
implementation. Average detection rates of (a) 5 MHz, (b) 10 MHz, (c) 20
MHz, and (d) 50 MHz result in curves of decreasing entropy.

To calculate the maximum amount of entropy generated per

second, we must first calculate the available entropy per detection.

For an average incoming photon rate R and time-bin size ∆t, the

probability of a photon falling into time-bin i is given by the

equation Pi = R∆te−R∆ti. The total entropy per detection is then

calculated by summing over all available Pi according to the

Shannon entropy equation S = −∑N
i=0 Pi log2(Pi). Given an APD

with dead-time DT, the “click-rate” (or rate at which photons are
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registered) is given by CR = 1/(DT + 1/R). Therefore, given an

entropy value per click and a rate at which they are registered, we

can multiply the two together to get the available entropy per

second. Assuming that our time-bin resolution is fixed,1 we can

then calculate the entropy per second for varying detection speeds.
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Figure 3.3: Entropy per second vs. detection speed given a 45-ns dead-time
and (a) 5-ns and (b) 27-ps time-bin resolutions. Note the different vertical
scales on the two plots.

As shown in Figure 3.3, the maximum detection rates vary

slightly with differing time-bin resolutions, with the peak

approaching 1/DT as resolution increases. For very high rates,

however, it is prudent to operate slightly below the maximum

detection speed, as slight fluctuations can quickly saturate the

detector, giving zero entropy per detection. Specifically, if the

incoming detections occur immediately after every dead-time

period, then all detections will fall into the first time-bin. The

onset of saturation occurs when the detection rate approaches

1/DT.

Verifying the above curves was experimentally infeasible as the

optimum operating speed was well above the maximum safe

continuous count rate of our detector (11 Mc/s). However, by

artificially increasing the dead-time by gating off the APD after a

successful detection, we can lower the optimal detection speed,

allowing for a direct comparison and verification of our theory, as

shown in Figure 3.4.

1We have also considered variable bin widths and alternate bin ordering to reduce the
amount of bias in the waiting-time distribution.
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Figure 3.4: Theoretical (curve) and actual (points) entropy per second vs.
detection speed, given a 50-ns (a) and 3-µs (b) dead-time.

3.3 Min-Entropy

Of special interest in RNGs, particularly in security applications, is

a measure known as min-entropy. A special case of Rényi entropy

[19], it is given by the equation Smin = − log (max{Pi}), where

max(Pi) is the probability of the most likely event. For example, in

our Poissonian waiting-time distribution, the most likely time-bin

value is always the first. In some sense, the min-entropy is a

measure of the “worst-case scenario,” or the maximum amount of

information that can be gained from a single attack. Therefore, in

applications where privacy is important, the min-entropy can be

considered of more importance than the Shannon entropy. In the

optimal case, however, the min-entropy equals the Shannon

entropy, as all N possible time-bin values would have the same

probability 1/N ; in this case S = log2(N).

As mentioned in Section 2.3, our random data is extracted from

the waiting-time distribution of a Poissonian process, characterized

by a rate parameter λ. Previously, we have assumed a

homogeneous Poissonian process, one for which λ is constant and

time-independent. Since our light source is a

constant-current-driven laser diode operating well above threshold,

this is a reasonable assumption, as the photon flux is directly

proportional to the input current. It has been shown [5, 6],

however, that by shaping the photon flux, the counting statistics

can be altered, and the waiting-time distribution can be tailored to

approximate the ideal, uniform case.
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To determine how we need to modify the rate parameter we

must consider an inhomogeneous Poissonian process. In this case,

our rate is dependent on time, and the expected number of events

between time a and b is λa,b =
∫ b
a λ(t)dt. Consequently, the

waiting-time distribution is now given by λ(t)e−
∫ b

a
λ(t′)dt′[20].

Given a waiting-time distribution with T possible time-bins, the

ideal case is one for which the probability of every bin is

time-independent, and exactly 1/T . Therefore, λ(t) must be a

solution to the equation

λ(t)e−
∫ t

0
λ(t′)dt′ =

1

T
. (3.1)

A rate parameter of the form λ(t) = 1/(T − t) is a solution to

this equation.2

Since λ(t) represents the photon arrival probability, it is

dependent on the photon flux of the laser diode, which in turn has

a linear relationship with the input current. Therefore, if the

current is equal to I(t) = 1/(T − t), then the photon flux should

be proportionally altered, achieving the ideal case.

As shown in Figure 3.5(a), this exact shape is impossible to

produce, as the current grows rapidly, thus requiring a very high

bandwidth and dynamic range and possibly damaging the diode.

Approximating the shape, however, yields reasonable results, with

a simulated min-entropy of approximately 0.96 random bits per

bit. Additional details on circuit realization of this pulse shape can

be found in Appendix B.

The choice of the reset period T depends on several factors. The

entropy per detection increases on a logarithmic scale (i.e., to go

from 6 to 7 bits requires 64 extra bins, while increasing from 7 to 8

requires 128), so an optimal reset period may not necessarily be the

longest one. As seen in Figure 3.6, the optimal period is strongly

dependent on the detector dead-time. If we had detectors with no

dead-time, for example, the optimal reset period would be after 2

bins (or 4 bins, as the interval between 1 and 2 bits is the same).

Unfortunately, however, the peak generation rate corresponds to a

2
−

∫ t

0
λ(t′)dt′ = −

∫ t

0
1

T−t′
dt′ = ln(T − t) − ln(T ) = ln((T − t)/T )

. λ(t)e
−

∫
t

0

λ(t)dt
= 1

T−t
eln((T−t)/T ) = 1

T
.
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Figure 3.5: Ideal (dashed) and simulated (solid) shaped pulse of 1/(T − t) (a)
pulse-shape; (b) associated waiting-time distribution.

detection rate well above what our current APDs can sustain.
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Figure 3.6: Peak min-entropy generation rate vs. trigger period T for 45-ns
(short dash), 30-ns (long dash) and 10-ns (solid) dead-times. Optimal
generation rates (as denoted by arrows) decrease with dead-time.

3.4 Min-Entropy vs. Shannon Entropy

Although min-entropy is arguably more critical for random

number generation, earlier stages of our experiment were

quantified according to Shannon entropy. Therefore, here we

compare the two measures and their respective rates.

For the Shannon entropy “version,” the input current is kept

constant, and the detections typically come faster than in the

shaped-current implementation (because of the higher probability

of earlier time-bins). For the min-entropy version, however, this is

not the case, as every time-bin is equally likely. Also, if no

detection occurs before the reset period, then the counter is reset,

and that time interval is wasted. For these reasons, the rate at

18



which Shannon entropy is generated is slightly higher than the

min-entropy rate, as shown in Figure 3.7.

1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
7

0

0.5

1

1.5

2
x 10

8

Detection Speed (s)

E
n
tr

o
p
y
 p

e
r 

S
e
c
o
n
d
 (

b
it
s
)

Figure 3.7: Shannon entropy (dashed) and min-entropy (solid) generation rates
versus detection rate, given 27-ps resolution and 45-ns detector dead-time.

It is important to note, however, that although slower, the

min-entropy version has several advantages. The amount of

entropy input into the hash function is fixed at 266 bits (as

explained in Chapter 4). Therefore, if each detection event

contains more entropy, it will take fewer detections to reach the

required amount. Since the hash is arguably the most

computationally expensive component of our design, using the

min-entropy allows for more FPGA resources to be used elsewhere.

Additionally, from a security standpoint, the min-entropy version is

more secure, as it relies less on a potentially insecure hash function.
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CHAPTER 4

POST-PROCESSING

In order to ensure the quality of our QRNG output, a significant

level of post-processing is required. Typically, when used in this

context, post-processing refers to the process of reducing bias in the

output, but for the purposes of this chapter it will also encompass

testing the data for randomness. As uniformity (no bias of 0s or

1s) is only a single requirement for random numbers, examining

the data with a series of widely accepted tests helps to identify

other possible problems (i.e., absence of correlations and

predictability). Although our current implementation carries out

only a fraction of post-processing in real-time, future

implementations will include the entire process.

4.1 Hashing

Because of the bias present in our waiting-time distribution, a

data-hashing technique must be used to “whiten” the random

number string, thereby preparing a shorter but more random

string, with randomness approaching one random bit per bit

(alternatively, as discussed in Section 3.3, one could use a shaped

optical pulse to approximate a constant waiting-time distribution,

though here too it is likely that some residual hashing would be

needed). The hash function used in our QRNG implementation is

the SHA-256 hash, of the SHA series created by NIST [12]. The

hash takes as input a 512-bit block, some of which is

predetermined and some of which contains the actual message.

The output is a 256-bit hash string, with each of the 2256 possible

strings having approximately the same probability.

A hash function, is by definition, a mathematical procedure that
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converts a large, possibly variably sized, amount of data into a

smaller hash value. Typically, when used in whitening

applications, hash functions must satisfy two criteria: determinism

and uniformity. Determinism is to the property that the same

input always maps to the same output. While harder to prove,

uniformity requires that the outputs be spread across all possible

values with equal probability. Testing this completely would be

computationally infeasible (e.g., 2256 is more than the number of

electrons in the universe), but we have verified uniformity to a

lesser degree by separating the output into smaller 16-bit blocks,

as shown in Figure 4.1.

Figure 4.1: Final whitened data output from our QRNG.

Although 256 bits of data are output from the hash, it is

imperative to realize that this does not necessarily correspond to

256 bits of entropy. A common mistake is to “seed” a hash with a

smaller random bit string and still assume all of the output is

random (if the seed is only 8 bits long, only 28 of the 2256 hash

values will ever occur). Therefore, it is prudent to assume that the

net amount of entropy output will always be less than the net

input. A reasonable assumption, and one by which our QRNG

operates, is that by providing 10 “extra” bits of entropy (i.e., 266

random bits input), the hash function will be sufficiently

saturated. It can be shown [21] that 266 random input bits

corresponds to an output entropy of 255.9999, or a Shannon

entropy per bit of 0.999996. The corresponding output

min-entropy is 255.28 bits, or 0.9972 random bits per bit.

In order to determine the amount of entropy input into the hash,

we must first calculate the expected entropy per detection. For a

measured average time-bin λ, the probability of a photon falling

into time-bin i is given by the equation Pi = λe−λt. The total

entropy per detection is then calculated by summing over all
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available Pi according to the Shannon entropy equation

S = −∑
Pi log2(Pi). Given an average entropy of N bits, then the

hash input buffer is filled with blocks of size 266/N , until the

266-bit requirement is met.1

4.2 Randomness Tests

In order to test the amount of randomness present in our data, we

have performed several tests. Some, while applicable to the

uniform hashed data, are not appropriate for the raw unhashed

data, and vice versa. Although there is no true test to determine

whether a sequence of bits is random (as the simplest example, the

next block of bits could duplicate all the data up to that point),

there are several widely accepted tests that we have utilized.

Several of these tests are designed to test a specific null

hypothesis. In this case, the hypothesis is that the bit-sequence

under test is random. Each of the tests creates a test statistic,

which is then used to calculate an associated p-value, which is

related to the strength of the evidence against the null hypothesis.

This p-value is a value on the interval [0,1], with a p-value of 1

denoting perfect randomness and a p-value of 0 denoting perfect

nonrandomness. A significance level (α) is then chosen for the

tests. If p≥α, then the null hypothesis is accepted; i.e., the

sequence appears to be random. If p < α, then the null hypothesis

is rejected; i.e., the sequence appears to be nonrandom. Typically,

α is chosen to be 0.01 [13], meaning that, assuming the test is

passed, the sequence can be said to be random (or nonrandom)

with a confidence of 99%.

4.2.1 Autocorrelation function

The measured waiting-time data (of Figure 2.4) does not reveal

anything about the order in which the underlying data was

produced; if that is not random, then obviously the random

number output would not be, either. To detect any simple

1In the case of an average entropy of a fraction of a bit, the value is rounded down.
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frequency patterns we have performed an autocorrelation analysis

on the raw prehash data. The autocorrelation function is used in

signal processing and statistics to measure how well a signal

matches a shifted version of itself. The autocorrelation of a

“white-noise” signal — a signal with no frequency patterns —

would look like a flat line except for a single sharp peak in the

center. Our raw data exhibited this behavior, as shown in Figure

4.2.
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Figure 4.2: Autocorrelation function results from prehash data for a
correlation distance of 500. Inset displays the solitary peak in the middle, an
indication of random white-noise behavior.

Autocorrelation analysis was also performed on the hashed data,

but is not directly relevant as frequency patterns would carry over

through the hash.

4.2.2 χ2 analysis

To test how well the data fits the expected distribution (both for

raw and hashed data), a series of χ2 tests were performed. For the

raw data, the distribution was compared against a decaying

exponential, while the hashed data was compared to the uniform

distribution. Although testing the output of a widely accepted

hash seemed somewhat unnecessary, it has proven useful in testing

for various logical problems.2

The χ2 statistic is calculated using the formula

2For example, a previous implementation had an error by which the last value in the buffer
register was output twice. The χ2 test was able to detect this, and subsequent autocorrelation
analysis was able to pinpoint the cause.
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χ2 = (Oi −Ei)
2/Ei, where Oi and Ei respectively are the observed

and expected values of each outcome i. The resulting χ2 statistic is

then compared against a χ2 function with the same degrees of

freedom. For binned data, the number of degrees of freedom is

equal to the number of bins [8]. Comparing the two values gives an

associated p-value, that represents the probability that any

deviation from the expected case was due to random fluctuations

only. A generally accepted threshold for RNGs is a significance

level of 0.01, which means that there is a 99% chance that

observed deviations are due to chance alone.

For the whitened data, the average p-value across 100 trials was

0.505, with the lowest being 0.091 and the highest being 0.982.

Therefore, our final QRNG data passed the χ2 test with a 0.01

significance level. The raw counter data, however, failed, even

when compared against a decaying exponential, which we

attributed to after-pulsing.

After-pulsing, in the context of APDs, refers to the “false”

detections caused by trapped carriers left over from the initial

avalanche. For our detector, the peak after-pulse time is

approximately 0.1µs after a “correct” detection, with a total

probability of 3%. To verify that the deviation in the χ2 test was,

in fact, from this effect, additional analysis was performed. First,

since the contribution to the waiting-time distribution due to

after-pulsing should also be a decaying exponential (just shifted by

0.1 µs and at 3% of the original value), we superimposed the two

together and did a χ2 test again, for which the test passed with a

significance level of 0.01. Therefore, we are fairly confident that at

least most of the deviation is from after-pulsing. In any event, the

nonrandomness from such after-pulsing is removed by the hash.

4.2.3 Overlapping serial test

Another common test for RNGs is the overlapping serial test

(OST), or overlapping m-tuple test [22]. Although it is a variation

of the χ2 test against uniformity, the serial test is important as it

can also test for correlations in the supposedly random data. The

OST groups the random output into a cyclic string of tuples and,

24



after repeating the experiment n times, overlaps the outcomes and

examines them for uniformity. For example, if after a particular

time-bin x an electronic characteristic caused the next output to

be time-bin y, then the tuple [x, y] would be overrepresented and

be detected by this test. The OST is also generally considered to

be one of the most flexible and stringent RNG tests available, as

adjusting the tuple size can reveal previously unknown

characteristics.3

The result of the OST is a χ2 value, which given a distribution

with d possible values and tuple size t should have dt − dt−1

degrees of freedom. The p-value should be uniformly distributed

between 0 and 1. If the tuples are too evenly distributed, the

p-value will approach zero, while if they are too unevenly

distributed, the p-value will approach 1. Unfortunately, given a

random output string of length N , and t possible outcomes, if

k = log2(N), then the amount of memory required is on the order

of 2kt+1 (e.g., assuming k = 6 and t = 6, we would need 36 GB of

memory). Because of this constraint, we have performed this test

for various combinations of k and t only up to a value of kt = 24.

Each tuple:output combination was tested 32 times, and each

resulting p-value distribution was tested for uniformity using the

Anderson-Darling goodness-of-fit test [24]. The QRNG is rejected

if the p-value significance level is less than 0.01, meaning the

distribution has a 1% chance of not being from the uniform

distribution. For the tests where kt = 24, we tested the versions of

[k = 1, t = 24], [k = 2, t = 12], [k = 3, t = 8], [k = 4, t = 6], [k =

8, t = 3], [k = 12, t = 2], and [k = 24, t = 1], for which all versions

passed the test. An example p-value distribution for [k = 4, t = 4]

is shown in Table 4.1.

4.2.4 NIST and DIEHARD test suites

There are several test suites available for random number testing,

but for this experiment we have chosen two of the most popular:

the DIEHARD Test Suite [14] and the NIST Statistical Test Suite

3For example, the popularly used GNU Scientific Library contains 57 RNGs, 29 of which
failed the OST for various tuple sizes [23].
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Table 4.1: Example results from OST given tuple size of 4 and 24 possible
values. The resulting χ2 value should fluctuate around 61440.

χ2 p-value
61017 0.8863
61483 0.4504
61443 0.4958
61011 0.8949
61170 0.7791
60968 0.9111
61044 0.8934
61510 0.3108
61524 0.2928

[13]. The DIEHARD suite contains 15 random number tests and

requires approximately 3 million random samples. The majority of

tests are run many times, and a resulting p-value is recorded. The

p-value is obtained by P = F (X), where F is the assumed

distribution of the random sample variable X. The p-values should

be uniform on the interval [0, 1] if the input file contains truly

random bits. The p-values are then tested for uniformity using the

Kolmogorov-Smirnov (KS) Test [25]. Unfortunately, the

approximation for F (X) is asymptotic (i.e., uniform everywhere

except approaching zero and one), for which the fit is the worst in

the tails, so obtaining an accurate significance level is difficult.4 In

any event, the tests were run on 100 sets of 3-Mbit sets of our final

whitened data, and the resulting p-values were tested for

uniformity, as shown in Table 4.2. The lowest p-value recorded was

0.019 and the highest was 0.98, which is consistent with the

expected results of the suite.

Similarly, NIST has released a statistical suite for

pseudo-random and random number generators for cryptographic

applications. As cryptographic applications require the

highest-quality random numbers, this suite is especially stringent.

As with the above, each test was run 100 times, and resulting

p-values were tested for uniformity. The highest p-value across all

tests was 0.994 and the lowest was 0.016, giving this RNG a

passing value at a significance level of α = 0.01. The results from

this suite are shown in Table 4.3.

4Instructions for the test suite advise that p-values above 0.975 and below 0.025 are not
abnormal; however, p-values of 1 or 0 out to six decimal places indicate the random number
generator has significant issues.
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Table 4.2: Results from DIEHARD Test Suite [14] for final whitened data.

Test Result of DIEHARD Test

Birthday Spacings PASS
Overlapping 5 PASS

Binary Rank Test 31 PASS
Binary Rank Test 32 PASS
Binary Rank Test 6 PASS

Craps Test PASS
RUNS Test PASS

Overlapping Sums PASS
Squeeze PASS

3-D Spheres PASS
Min Distance PASS
Parking Lot PASS

Count the 1-s PASS
OPSO PASS

BitStream PASS

Table 4.3: Results from NIST Test Suite [13] for final whitened data.

Test Result of NIST Test

Frequency PASS
Block Frequency PASS
Cumulative Sum PASS

RUNS PASS
Long RUNS PASS

Rank PASS
DFFT PASS

Non-Overlapping PASS
Overlapping PASS
Universal PASS

Approx Entropy PASS
Serial PASS

Linear Complexity PASS
Random Excursions PASS

Serial PASS
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CHAPTER 5

FUTURE

IMPROVEMENTS

Our QRNG implementation has four major elements: photon flux

production, single-photon detection, time-interval measurement,

and data processing. In this chapter, techniques for increasing

both the quality and rate of random number generation will be

discussed. Some of these methods (such as shaped-pulse-driven

diodes) are specific to this application, while others (such as better

detectors), have a broader range of applications. For each

improvement, a qualitative discussion on how random number

generation will be affected is presented.

5.1 Photon Production

As discussed in Section 3.3, we are currently exploring driving our

light source with a shaped pulse of the form 1/(T − t), so as to

reduce the bias present in our Poissonian waiting-time distribution.

While increasing the amount of min-entropy present in our raw

counter data, this improvement will significantly reduce the

amount of required hashing, freeing up additional resources on the

FPGA for real-time analysis. Additional details on the actual

circuit are given in Appendix B.

5.2 Detection Methods

The method by which photons are detected is one of the most

important parameters for our QRNG system. While detection

efficiency is typically an important criterion when evaluating a

single-photon counter, for our application this is not the case.

Instead, we are more interested in the maximum detection rate and
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the detector dead-time. As shown in Figure 3.3(b), our current

rate of detection is not optimal for our time-bin size of 27 ps.

Increasing the detection speed will allow a faster rate of random

number generation, while also allowing for further improvements in

time-bin resolution and dead-time to offer additional benefit.

Therefore, we have researched several detection methods and

evaluated them with respect to their expected performance benefit

to our QRNG system.

5.2.1 Photomultiplier tubes

A photomultiplier tube (PMT) is a high-efficiency photon-counting

device used in many applications such as medical imaging, blood

tests, and high-end imaging applications. A viable alternative to

APDs, PMTs offer extremely low noise and very high efficiency. Of

special interest to us is the fact that a PMT contains no Johnson

noise, only quantum shot noise. This is overshadowed, however, by

the requirement that when used in single-photon counting mode, a

PMT has to be reset, thus limiting its continuous detection speed

to rates well below the 1-GHz speed of the APD. Additionally,

PMTs are extremely sensitive and can be burnt out easily, while

APDs generally contain added circuitry to control the avalanche

current. Therefore, at this time, APDs are a much more viable

option.

5.2.2 Self-differencing APDs

Avalanche photodiodes (APDs) are widely used for single-photon

detection because of their simplicity and robustness. When an

APD is biased above the breakdown voltage, a single photo-excited

carrier can quickly multiply as a result of impact ionization,

producing an easily detectable current. Once triggered, the

avalanche flows through the whole multiplication volume of the

APD; because the avalanche is self-sustaining, it must be quenched

by reducing the bias to a level below the breakdown voltage. This

is typically done by operating the diode in gated Geiger mode, for

which voltage pulses are periodically applied for several
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nanoseconds to bias the APD above the breakdown voltage. While

the pulses are high, the APD is enabled and can detect single

photons; while they are low the APD is disabled, as shown in

Figure 5.1(a). The resulting photon-induced signal is then

compared against the APDs characteristic capacitive response.

Since this capacitive response can also be quite large, this makes it

difficult to detect much smaller avalanches.

(a) (b)

Figure 5.1: APDs operating in (a) conventional and (b) self-differencing
Geiger modes, as shown in [26].

It has been shown, however, that by incorporating additional

circuitry, it is possible to eliminate the capacitive response from

the output signal, thus revealing much weaker signals and even

enabling photon-number resolution [26]. As shown in Figure

5.1(b), the output signal is split into two paths, one of which

introduces a delay of one period of an alternating bias voltage

relative to the other path. The two signals are then subtracted

from each other using a differencer circuit, allowing for the

discrimination of avalanche currents more than 10 times weaker

than what can be detected conventionally. Additionally, this

method requires a much smaller applied voltage, allowing the

detector to be operated at rates exceeding 1 GHz, after which

after-pulsing becomes problematic.

Assuming only a maximum detection rate of 1 GHz (and not

photon number resolution), this improvement alone would allow for

our QRNG to operate at speeds exceeding 5 Gbit/s. If, however,

photon number resolution were possible, other alternatives (such

as using photon number as the quantum random variable) become

available. Recently, these detectors were used in conjunction with
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the beam-splitter approach, as shown in Figure 2.2, but because of

resolution issues they were able to achieve only 4 Mbit/s [27].

5.2.3 APD arrays

Instead of a single APD per photon-counting module, currently

available [28], multi-pixel photon counter arrays (MPPCs) can be

used. Each array consists of multiple APD pixels operating in

Geiger mode, with each pixel outputting a pulse signal when it

detects a single photon. The total output from the MPPC is the

sum of all the signals. While the largest device available has 1600

pixels, it currently affords no additional QRNG performance

benefit over the single photon-number-resolving APD. If, however,

it were possible to tell which pixel fired, this device could be

treated as 1600 separate time-interval-based QRNGs operating in

parallel and would allow the use of spatial information as well as

temporal to generate random bits, as shown in Figure 5.2.

Assuming a uniform beam profile and pixel efficiency (so that

every pixel has equal probability of detecting a photon), and N

pixels, each sample would provide log2(N) random bits. This

would be insignificant, however, next to the improvement from

1600 parallel QRNGs. However, one would need individual timing

circuitry for each pixel. Additionally, different pixels would

undoubtedly not have the same detection efficiency, potentially

introducing unwanted bias into the final data.

5.3 Time Resolution Measurement

We are currently operating at a time-bin resolution of 27 ps, as

afforded by our ACAM TDC-GPX Time-to-Digital Converter [17].

By relying on the known propagation times of inverters, this device

offers a very simple implementation at a very low cost ($300). We

recently evaluated a PicoQuant Picoharp 300 [29], which has a

time-bin resolution of 4 ps. This device, however, is very expensive

(approximately $20,000) and is infeasible for our current

implementation. Therefore, at this time we have no immediate
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Figure 5.2: Example multi-pixel photon-counting array. Assuming 8× 8 pixels,
and the capability to resolve which pixel received a photon (as denoted by the
circle), each detection event would provide up to 6 bits of random data. This
assumes equal pixel efficiency and a uniform-intensity beamprofile, making
this difficult to implement. Specifically, although one could measure the device
characteristics and the light beam transverse intensity profile, and thereby
quantify the randomness per detection (just as we did for our own time-based
system), for secure operation one would need to monitor these characteristics
every time the QRNG was used, in order to avoid undetected biases in the raw
(unhashed) data.

plans to upgrade our time-bin resolution.

5.4 Data Processing

The data processing component of our QRNG has room for several

improvements. The current FPGA (Xilinx Spartan-3) is an older

model, and simply upgrading to a new version such as the Virtex-6

[30] would allow for more processing power and faster operation.

Specifically, we plan to implement a system that will, in real-time,

monitor the incoming time-interval data and perform several

analysis operations.

Our current implementation expects a fixed amount of entropy

per detection. This parameter is set during the device initialization

and cannot be changed unless the QRNG is reset. Consequently, if

the detection rate were to change suddenly (as a result of a change

in the light flux or in the detector efficiency) and the entropy per

detection were to go down, the system would not detect this

condition and would then be assigning more bits per detection

than it should. By periodically sampling the time-interval data

and adjusting the number of random bits assigned to each

detection, the quality of our random numbers will be increased.
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Additionally, we would like the capability to perform, in realtime,

several statistical randomness tests on our data. This would

require substantial processing power and would certainly require

an upgraded FPGA.
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APPENDIX A

ATTENUATION

As discussed in Section 2.4, we have used a variety of techniques to

attenuate the light to the desired photon flux. We have also

assumed that, given a high enough level of attenuation, any

unwanted effects arising from a non-ideal light source will be

washed out of the final data. To verify this we have run a variety

of simulations, but for the purpose of this discussion we will

assume the most extreme case - one for which the light initially

contains zero randomness.

In previous sections, when referring to the waiting-time

distribution, we have defined the ideal case as one for which every

time-bin has equal probability of occurring. While important, this

definition does not encompass the entire problem. If, for example,

the final waiting-time distribution was flat, but the order in which

these events occurred was deterministic - while seemingly having a

maximum entropy value, the data would be totally non-random.

Therefore, we will now assume that the ideal case is one for which

every value in the waiting-time distribution is independent of every

other, or Poissonian.

A.1 Poissonian Light

A Poissonian process is a continuous-time counting process

characterized by a rate parameter λ. The rate parameter is the

expected number of events per unit time, or in our case, the average

number of single-photon detections per second. For simplicity, we

assume a homogeneous process, one for which λ does not change

over time. In this case, the number of events that have occurred

up to time t is N(t), and the number of events in the interval
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(t, t + τ ) is characterized by P [N(t + τ )− N(t) = k] = e−λt(λt)k

k!
.

Consequently, the waiting-time between arrivals is the same as the

time until the first (since they are all independent), and is

therefore given by P [N(t) − N(0) = 0] = e−λt(λt)0

0!
= e−λt. For this

distribution, the mean number of occurrences λ is also its variance,

and thus fluctuates with standard deviation σk =
√

λ. These

fluctuations are referred to as Poissonian noise, and are an

important measure of randomness in our waiting-time distribution.
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Figure A.1: Actual (blue) vs. theoretical (red) waiting-time distribution of
raw data given an average detection rate of 6 MHz and a time-bin resolution
of 5 ns. Deviation from the expected decaying exponential is due to
after-pulsing and timing effects within the system.

As shown in Figure A.1, the measured waiting-time distribution

does not exactly fit the expected e−λt behavior. Given an infinite

amount of time and samples, the two would approach each other.

In the event that the noise is less than expected, the distribution is

sub-Poissonian, and in the case that it is more, super-Poissonian.

A.2 Squeezed Light

It has been shown [15], that under certain conditions it is possible

to generate light for which the number uncertainty is less than for

a coherent state. Using an LED driven by current through a

resistor, at sufficiently low temperatures the resistor’s Johnson

noise dominates over the quantum shot noise, giving the photon

flux sub-Poissonian characteristics. Therefore, the resulting

waiting-time distribution contains less uncertainty, a feature
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undesirable for random number generation.

Fortunately, given any distribution, heavy enough attenuation

(or random deletion), will cause the resulting distribution to

approach a Poissonian [16]. To verify this we numerically modeled

a totally periodic source, as shown in Figure A.2a. As every

interval is the same, the waiting-time histogram contains only one

value, which for simplicity has been assigned the first time-bin.

Next, we simulate increasing the attenuation percentage. This was

done using a RNG which outputs a number between 0 and 1. If

the number was greater than the percent attenuation, that was

counted as a detection. Otherwise, the time interval was increased

and the RNG ran until the next detection.

As shown in Figure A.2, increasing levels of attenuation result in

waiting-time distributions that, at higher levels of attenuation,

approach the decaying exponential characteristic of a Poissonian.

At an attenuation level of 95%, the difference between the two

distributions decreased to less than one percent. Therefore, since

we operate at an optical attenuation level of 99.9999%, it is

reasonable to assume that any correlations are reduced to an

insignificant level and may be ignored.
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Figure A.2: Simulated waiting-time distributions of perfectly number-squeezed
light for attenuation levels of 0% (a), 20% (b), 50% (c), 75% (d), 90% (e), 95%
(f), 99% (g), and 99.9% (h).
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APPENDIX B

SHAPED-PULSE

CIRCUIT

As discussed in Section 3.3, in order to reduce the bias in our

waiting-time distribution we have simulated a circuit which drives

our laser diode in such a way as to make every time-bin occur with

approximately equal probability. Given a desired uniform

waiting-time distribution with reset period T, the output current

must be of the form 1
T−t

, which is impossible to achieve. Therefore,

we have approximated the pulse shape using the method detailed

below.

The circuit in our design contains three major components: a

sawtooth generator, logarithmic converter, and differentiator.

Additional implementation specific components are required to

achieve correct signal levels (gain stages, voltage followers, etc.),

but the four main components can accurately approximate the

pulse shape. The pulse is achieved by starting with a sawtooth

(T-t), taking its natural log (ln(T-t)), and differentiating to

achieve the final pulse shape of( 1
T−t

).

B.1 Sawtooth Generator

The sawtooth generator is the first stage of our shaped pulse

circuit. As shown in Figure B.1, the design for the sawtooth is

fairly simple. Other components for impedance matching and

voltage shifting will need to be added depending on the

implementation specifics, but are not shown here. The left side of

the circuit (the op-amp and resistors R3 and R4) form a bistable

multi-vibrator, or a square wave. The square wave signal is then

fed into the integrator formed by the right op-amp, forming a

symmetric triangle wave. The symmetry is lost, however, due to
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the values of the resistors R1 and R2. With a small R1, the

capacitor charges fast, and with a large R2, charges slowly, thus

forming the desired sawtooth shape, given by the equation

f = 1
2C(R1+R2)

R3

R4
.Due to the high bandwidth requirements of this

circuit, several high-speed components had to be used. Specifically,

OPA847 op-amps [31] and 1N4148 fast rectifying diodes [32], were

used to achieve a bandwidth of approximately 3.9 Ghz.

Figure B.1: Sawtooth generator circuit for our shaped-pulse implementation.

B.2 Logarithmic Converter

After the (T − t) sawtooth shape has been generated, the next step

in preparing the shaped pulse is to create the natural log of signal,

or ln(T − t). This is accomplished with a logarithmic converter

[33], a device based on the precisely logarithmic relationship

between collector current and emitter-base voltage in a bipolar

transistor. Specifically, given a collector current Ic and

emitter-base voltage Vbe, the two are related by the equation

Ic = Ise
Vbe
Vt , where Is and Vt are device specific saturation current

and thermal voltages. As shown in Figure B.2, transistor Q1 is

used as the non-linear feedback element around an op-amp.

Negative feedback is applied to the emitter of Q1 and the emitter

base junction of Q2. This forces the collector current of Q1 to be

exactly equal to the current through the input resistor. Negative

feedback forces the collector current of Q2 to equal the current

through R3. Since the collector current of Q2 remains constant,

the emitter-base voltage also remains constant. Therefore, only the

Vbe of Q1 varies with a change of input current. The resulting
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output voltage is given by Eout = −kT
q

R1+R2
R2

ln EINR3

EREF RIN
.

Figure B.2: Transistor based logarithmic converter design, as shown in [33]

B.3 Differentiator

In order to achieve the final pulse shape, a differentiator is

required to convert the current from ln(T − t) to 1
T−t

. This is one

of the most elementary circuits built with op-amps, so greater

detail will not be given to this component. As shown in Figure

B.3, however, using the high-speed OP847 op-amp allows for a

reasonable approximation to the final pulse shape.
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Figure B.3: Ideal (blue) and simulated (red) shaped pulse of 1

T−t
pulse-shape

(a) as well as associated waiting-time distribution (b).
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